Eastern Mediterranean Health Journal | All issues | Volume 30 issue 1 | Volume 30 issue 1 | Challenges and epidemiological implications of the first outbreak of dengue and chikungunya in Sudan

Challenges and epidemiological implications of the first outbreak of dengue and chikungunya in Sudan

Print PDF

PDF version

Short research communication

Setalnafer Magdy Aljaily1, Ismail Ali Yousif Hamed2, Khalid Sarour Mustafa3, Osama Salah Basher Ishag4, Ezeirig Awad Ezeirig Musa5, Abdel Kreem Ahmed5, Eiman Mohmmed Adam Ibrahim5 and Rasha Siddig Azrag6

1Department of Integrated Vector Management, White Nile State, Sudan. 2Health Emergencies and Epidemic Control, White Nile State, Sudan. 3World Health Organization, White Nile State, Sudan. 4Sinnar Malaria Research and Training Centre, Sinnar State, Sudan. 5Integrated Vector Management, While Nile State, Tandalti Locality, Sudan. 6Zoology Department, Faculty of Science, University of Khartoum, Sudan (Correspondence to RS Azrag: This e-mail address is being protected from spambots. You need JavaScript enabled to view it ).

Abstract

Background: Dengue and chikungunya are mosquito-borne infections that are spreading rapidly worldwide. The highest burden lies in tropical and subtropical countries. In 2022 Sudan encountered the most widespread infection of both diseases.

Aim: To describe the magnitude of the first outbreak of dengue and chikungunya infections in Tandalti Town, White Nile State, southern part of Sudan.

Methods: Following the report of a high number of undifferentiated febrile illnesses in 32 health clinics in Tandalti Town, an area with high densities of Aedes aegypti, we collected blood samples from symptomatic suspected cases. The samples were tested for major arboviral infections using arboviral-specific enzyme-linked immunosorbent assays (IgM capture ELISA), and serologically positive samples were confirmed using commercially available Real Time RT-PCR Kits.

Results: Out of 773 suspected cases, 63 (8.15%) were confirmed. Eleven (17.46%) of the confirmed cases were DENV, 49 (77.77%) were CHIKV, and 3 (4.76%) were DENV and CHIKV co-infections. The outbreak started at the beginning of October and ended by mid December 2022. Both dengue and chikungunya infection was higher (41(65.08%)) among young females than males (22 (34.92%)).

Conclusions: White Nile State may experience larger outbreaks of dengue and chikungunya in the future, there is, therefore, an urgent need for proper vector control interventions in the state and nearby states.

Key words: dengue, chikungunya, fever, Sudan, Aedes aegypti

Citation: Aljaily SM, Hamed IAY, Mustafa KS, Ishag OSB, Musa EAE, Ahmed AK, et al. Challenges and epidemiological implications of the first outbreak of dengue and chikungunya in Sudan. East Mediterr Health J. 2024;30(1):53–59. https://doi.org/10.26719/emhj.24.007

Received: 07/02/23; Accepted: 08/10/23

Copyright: © Authors 2024; Licensee: World Health Organization. EMHJ is an open access journal. All papers published in EMHJ are available under the Creative Commons Attribution Non-Commercial ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).


Introduction

Dengue virus (DENV) and Chikungunya (CHIKV) infections are fast-growing mosquito-borne arboviral diseases. The spread of both diseases is increasing worldwide and is a growing public health threat for many continents, including the Americas (1). The most affected areas are tropical and subtropical Africa. DENV varies in presentation from asymptomatic infections to dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), which are the most serious forms of the disease. CHIKV infection is characterized by an abrupt onset of fever, frequently accompanied by debilitating joint pain. Occasional cases of eye, cardiological, and neurological complications have been reported with CHIKV infections.

The history of arboviral infections in Sudan dates back to the past century with noticeably increased outbreaks of viral haemorrhagic fevers since the 1970s (2). In Sudan, arboviral infections include yellow fever, Rift Valley fever, Crimean-Congo heamoraghic fever, DENV and CHIKV. DENV and CHIKV are spreading across the country more rapidly than other arboviral diseases. DENV has received more attention than CHIKV, as CHIKV is usually considered a mild condition of short duration (3-5). CHIKV was first reported in sporadic cases in South Kordofan or rare cases in central and eastern Sudan (6,7), but outbreaks have dramatically increased. In 2018/2019, the Kassala area in eastern Sudan experienced the largest epidemic of CHIKV in Africa to date, with a greater incidence of severe illness, fatality, and longer-term disability (8-10).

Outbreaks of DENV have increased dramatically during the past 20 years. Several outbreaks of DENV and DHF were reported in Port Sudan in the Red Sea State in 2004, 2005, and 2010 (11-13). DENV was then reported in other cities in eastern Sudan suggesting the significant circulation of the disease and difficulties in differentiating it from other diseases, including measles, during diagnosis. (14-18). Outbreaks of DENV and DHF were also reported in northern, central and Darfur states (19-25). In 2020, the presence of DENV infections was documented in 11 of the 18 states in Sudan (26). The study (26) concluded that DENV is circulating countrywide with a significant spatiotemporal variation in the disease seroprevalence.

The main vector associated with the transmission of both DENV and CHIKV infections in Sudan is Aedes aegypti (10,13,18,27,28). The main sources of Aedes aegypti immatures are man-made larval habitats used for the preservation of water for domestic use.

This study reports the first outbreak of DENV and CHIKV in White Nile State which is located in the southern region of Sudan and borders Khartoum, the capital city, in the northeast.

Methods

By the beginning of October 2022, the White Nile State Ministry of Health reported an unusually high number of cases of non-malaria febrile illness in the Tandalti locality (map 1), accompanied by high densities of Aedes aegypti (unpublished data of the Integrated Vector Management Unit). An outbreak investigation team was sent to the area by the Federal Ministry of Health, in collaboration with the White Nile State Ministry of Health and the WHO. Suspected cases of arboviral infections were identified in 34 health clinics. Blood samples were collected from suspect symptomatic patients and tested for major arboviral infectious agents of dengue fever, yellow fever, Rift Valley fever, Crimean–Congo Hemorrhagic Fever, West Nile virus, CHIKV, and Zika virus.

Arboviral-specific enzyme-linked immunosorbent assays (IgM capture ELISA) were performed using commercially available kits and following the manufacturer’s instructions (Panbio, Inverness Medical Innovations Australia Pty Ltd, Brisbane, Australia). Serologically positive samples were confirmed by using commercially available RT-PCR Kits (Shanghai ZJ Bio-Tech Co., Ltd, Shanghai, China) following the manufacturer’s guidelines. All serological and molecular assays were conducted at the Sudan National Public Health Laboratory/Federal Ministry of Health. Descriptive statistics, mainly frequencies and percentages, were applied using Microsoft Excel 2016 to describe the magnitude of outbreaks.

A package of interventions was implemented to control the outbreaks of both diseases, including house-to-house inspections to destroy main larval habitats and to control vector populations (Aqua-Reslin) in all affected areas, health education sessions, and medical care for all suspect cases.

Map 1 Landsat map showing the geographical location of Tandalti town in White Nile State, Sudan

Results

Seven hundred and seventy-three suspect cases of hemorrhagic fever were identified within Tandalti Town and the 32 villages surrounding it, with the majority of the cases reported in the villages. The first suspected case appeared on 4 October 2022, and the last was reported during the first week of December 2022, with the peak of the outbreak in November (Figure 1). Out of 773 suspect cases, 63 (8.15%) were confirmed; 11 (17.46%) were DENV, 49 (77.77%) were CHIKV and 3 (4.76%) were co-infected with DENV and CHIKV. For DENV, 5 (45%) were males while 6 (55%) were females. For CHIKV, 16 (33%) were males and 33 (67%) were females. For mixed infections, 1 case (33%) was male while 2 (67%) cases were females. Most of the DENV and CHIKV cases were in young females between the ages of 1 and 19 years (Table 1).

The clinical presentation of CHIKV showed that all cases (100%) presented with fever and the majority presented with headache (86%), joint pain (79%), muscle pain (78%) and back pain (75%). Sixty-two percent had loss of appetite/anorexia, 6% were in coma, and 4% had convulsions. For DENV; 91% of the cases presented with both fever and headache, 45% had bleeding, 73% had both joint and muscle pain, 36% had loss of appetite, and 55% had back pain. The mortality rate was 0% for DENV, CHIKV and co-infection.

Discussion

DENV and CHIKV infections in Sudan are associated with the presence of Aedes aegypti, the main vector (10,13,18, 27, and 28). The abundance of Aedes aegypti in the Tandalti locality (unpublished data) indicates the urgent need for vector surveillance and control in the area and is associated with increased risk of transmission of DENV, CHIKV and other arboviral diseases.

We believe that the magnitude of the outbreak may have been underestimated due to several reasons that were previously given in similar outbreaks of DENV and/or CHIKV infections in western and eastern Sudan e.g. passive surveillance and reliance on the attendance of patients to health centres, home treatment due to the cost and limited treatment options, limited diagnostic resources, and absence of data collection in private clinics (9,14,24).

The high infection rate suggests that people are vulnerable to these infections. The risk of DENV and CHIKV infections followed a spatial pattern and was higher in villages surrounding Tandalti Town. The same spatial pattern was reported in eastern Sudan by Seidahmed et al., who showed a spatiotemporal pattern of DENV transmission in Port Sudan City with higher DENV prevalence in lower and mid classes of neighborhood strata (13).

This study showed that for both DENV and CHIKV infections, females were slightly more affected than males and the outbreak affected all age groups with higher rates among the younger populations between the ages of 1 and 19 years. This is in agreement with Ahmed et al., who documented an outbreak of DENV in western Sudan (24). However, higher prevalence among males were reported in eastern Sudan by Seidahmed et al., (13). The latter study reported that DENV affected all groups with a higher infection rate among young age groups; between 6 and 39 years. This is consistent with the epidemiologic features of the CHIKV outbreak in eastern Sudan (9), which can be explained by the fact that women and young people stay at home during the day and are therefore more exposed to bites of Aedes aegypti inside houses (9,10).

The clinical presentation of both DENV and CHIKV cases in this outbreak was severe and suggests a lack of previous exposure and/or, for DENV, co-infection of 2 serology types. The latter is well documented in Sudan (10). The shared clinical signs between DENV and CHIKV and the fact that they are transmitted by the same vector within the same area increases the risk of misdiagnosis and under-reporting of CHIKV, as previously reported by Hassan et al (8). White Nile State has a high prevalence of malaria (29) and it is possible that these arboviral infections were mistakenly unidentified or/and misdiagnosed with malaria and/or other diseases e.g., measles (15).

CHIKV disease can be divided into 4 phases based on its clinical presentation and immunopathology (30). Supportive care and treatment guidance of different at-risk populations is complicated by the lack of high-quality clinical management guidelines for different at-risk populations (31). Recent outbreaks of CHIKV in eastern Sudan have also challenged the view that CHIKV is a mild condition of short duration. Bower et al., reported life-threatening clinical presentations in the outbreak of CHIKV in Kassala that included haematemesis, oral bleeding, epistaxis, petechiae, haemoptysis, and melena, in addition to one fatal case who died from sepsis complicated by disseminated intravascular coagulation and acute kidney injury (9).

White Nile State borders South Sudan, and many areas serve as customs centres and routes for immigrants, displaced persons, and refugees of both countries. It hosts most of South Sudanese refugees and camps in Al Salam (29). This is an area characterized by agricultural as well as grazing land and the old nomadic route across the state into South Sudan. It has a high incidence of malaria disease (32). Both arboviral diseases could be mistakenly diagnosed as malaria. All above mentioned factors could have serious implications and increase the risk of future outbreaks in the area and the possibility of transmission of the disease in refugee camps in White Nile State and cross-border transmission into South Sudan.

Conclusion

There is an urgent need for strategic vector control interventions to prevent future outbreaks of DENV and CHIKV infections in While Nile State, which hosts most of South Sudanese refugees. Both arboviral diseases could be mistakenly identified as malaria, therefore, attention should be paid to the diagnosis of these diseases in White Nile State.

Funding: None.

Competing interests: None declared.

Défis et conséquences épidémiologiques liés à la première flambée épidémique de dengue et de chikungunya au Soudan

Résumé

Contexte : La dengue et le chikungunya sont des infections transmises par les moustiques qui se propagent rapidement dans le monde entier. Les pays tropicaux et subtropicaux sont les plus touchés. En 2022, le Soudan a connu la plus importante survenue de ces deux infections.

Objectif : Décrire l'ampleur de la première flambée épidémique de dengue et de chikungunya dans la ville de Tandalti, dans l'État du Nil Blanc, au sud du Soudan.

Méthodes : Suite au signalement d'un nombre important de cas de maladies fébriles non différenciées dans 32 centres de santé de la ville de Tandalti, une zone à forte densité d'Aedes aegypti, nous avons prélevé des échantillons de sang sur des cas suspects symptomatiques. Les échantillons ont été testés afin de détecter les principales arboviroses à l'aide de tests d'immunoadsorption enzymatique (test ELISA pour la détection des IgM) spécifiques à ces infections, et les échantillons séropositifs ont été confirmés au moyen de kits RT-PCR en temps réel disponibles dans le commerce.

Résultats : Sur 773 cas suspects, 63 (8,15 %) ont été confirmés. Onze (17,46 %) des cas confirmés étaient des infections à DENV, 49 (77,77 %) étaient des infections à CHIKV, et 3 (4,76 %) étaient des co-infections à DENV et à CHIKV. La flambée a commencé au début du mois d'octobre et s'est terminée au milieu du mois de décembre 2022. Le nombre d'infections par le virus de la dengue et du chikungunya était plus élevé chez les jeunes femmes (41 [65,08 %]) que chez les hommes (22 [34,92 %]).

Conclusion : L'État du Nil Blanc pourrait connaître à l'avenir des flambées plus importantes de dengue et de chikungunya. Il est donc urgent de mettre en œuvre des interventions appropriées de lutte antivectorielle dans cet État et dans les États voisins.

التحديات والتداعيات الوبائية لأول فاشية لحمى الضنك والشيكونجونيا في ولاية النيل الأبيض، السودان

ست النفر مجدي الجيلي، إسماعيل علي يوسف حامد، خالد سرور مصطفى، اسامه صلاح بشير اسحاق، ازيرق عوض ازيرق موسى، عبد الكريم أحمد عبد الكريم أحمد، إيمان محمد آدم إبراهيم، رشا صديق أزرق

الخلاصة

الخلفية: حُمى الضنك والشيكونجونيا هما حالتا عدوى تنقلهما البعوض وتنتشر بسرعة في جميع أنحاء العالم. ويقع العبء الأكبر للعدوى في البلدان المدارية وشبه المدارية. وفي عام 2022، عانى السودان من أكثر حالات العدوى انتشارًا لكلا المرضين.

الأهداف: هدفت هذه الدراسة الى وصف حجم الفاشية الأولى لعدوى حمى الضنك والشيكونجونيا في مدينة تندلتى، بولاية النيل الأبيض، في الجزء الجنوبي من السودان.

طرق البحث: عقب الإبلاغ عن وجود عدد مرتفع من حالات الحُمَّى غير المتمايزة في 32 عيادة صحية بمدينة تندلتى، وهي منطقة بها كثافة عالية من بعوض الزَّاعِجَة المِصْرِيَّة، جمعنا عينات الدم من الحالات المصحوبة بأعراض المشتبه في إصابتها. واختُبرت العينات للكشف عن حالات العدوى المنقولة بالمفصليات الرئيسية باستخدام مُقايسات المُمْتَزِّ المناعيّ المُرتبِط بالإنزيم الخاصة بالأمراض الفيروسية التي تنقلها المفصليات (اللاقطة للجلوبولين المناعي M)، وأُكِّدت الإيجابية المَصْلية للعينات بمجموعات اختبار تفاعل البوليميراز التسلسلي باستخدام إنزيم النسخ العكسي في الوقت الحقيقي المتاحة تجاريًّا.

النتائج: من بين 773 حالة مشتبهًا في إصابتها، تأكدت إصابة 63 حالة (8,15%). وكانت إحدى عشرة حالة (17,46%) من الحالات المؤكدة مصابة بحُمى الضنك، و49 حالة (77,77%) مصابة بالشيكونجونيا، و3 حالات (4,76%) مصابة بعدوى حُمى الضنك المصحوبة بالشيكونجونيا. وبدأت الفاشية في أوائل أكتوبر/ تشرين الأول وانتهت بحلول منتصف ديسمبر/ كانون الأول 2022. وكانت العدوى بكلٍّ من حُمى الضنك والشيكونجونيا أعلى [41 (65,08%)] بين الإناث الشابات منها بين الذكور [22 (34,92%)].

الاستنتاجات: قد تشهد ولاية النيل الأبيض في المستقبل فاشيات أكبر لحُمى الضنك والشيكونجونيا، ولذلك، هناك حاجة ملحَّة لوضع تدخلات مناسبة لمكافحة النواقل في هذه الولاية والولايات المجاورة.

References

1. Espinal MA, et al. (2019). Emerging and Reemerging Aedes-Transmitted Arbovirus Infections in the Region of the Americas: Implications for Health Policy. American Journal of Public Health, 109(3), 387–392. Available at: DOI: 10.2105/AJPH.2018.304849.

2. Bower H, El Karsany M, Alzain M, Gannon B, Mohamed R, Mahmoud I, Eldegail M, Taha R, Osman A, Mohamednour S, Semper A, Atkinson B, Carter D, Dowall S, Furneaux J, Graham V, Mellors J, Osborne J, Pullan ST, Slack GS, Brooks T, Hewson R, Beeching NJ, Whitworth J, Bausch DG, Fletcher TE. Detection of Crimean-Congo Haemorrhagic Fever cases in a severe undifferentiated febrile illness outbreak in the Federal Republic of Sudan: A retrospective epidemiological and diagnostic cohort study. PLoS Neglected Tropical Diseases. 2019 Jul 10;13(7):e0007571. doi: 10.1371/journal.pntd.0007571. PMID: 31291242; PMCID: PMC6645580.

3. World Health Organization. (2009). Dengue guidelines for diagnosis, treatment, prevention, and control: new edition. World Health Organization. Link

4. Dash PK, Parida MM, Saxena P, Abhyankar A, Singh C, Tewari K, ... Rao P. (2006). Reemergence of dengue virus type-3 (subtype-III) in India: implications for increased incidence of DHF & DSS. Virology Journal, 3(1), 1-10.

5. WHO. (2023). Dengue and severe dengue. Retrieved from https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

6. Gould LH, Osman MS, Farnon EC, Griffith KS, Godsey MS, Karch S, Mulenda B, El Kholy A, Grandesso F, de Radiguès X, Brair ME, Briand S, El Tayeb el SM, Hayes EB, Zeller H, Perea W. An outbreak of yellow fever with concurrent chikungunya virus transmission in South Kordofan, Sudan, 2005. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2008 Dec;102(12):1247-54. doi: 10.1016/j.trstmh.2008.04.014. Epub 2008 May 27. PMID: 18502458.

7. Adam A, Seidahmed OM, Weber C, Schnierle B, Schmidt-Chanasit J, Reiche S, Jassoy C. Low Seroprevalence Indicates Vulnerability of Eastern and Central Sudan to Infection with Chikungunya Virus. Vector Borne and Zoonotic Diseases. 2016 Apr;16(4):290-1. doi: 10.1089/vbz.2015.1897. Epub 2016 Mar 14. PMID: 26974266.

8. Hassan E El Bushra1, Betigel W Habtewold2, Naeema Al Gasseer3, Rehab E Mohamed4, Salim A Mohamednour5, Mazza Abshar6 and Babikir Al Magboul7. Outbreak of Chikungunya Fever in Sudan, 2018-2019. Juniper Online Journal of Public Health, Volume 4, Issue 4 - May 2019. DOI: 10.19080/JOJPH.2019.04.55564.

9. Bower H, El Karsany M, Adam AAAH, Idriss MI, Alzain MA, Alfakiyousif MEA, Mohamed R, Mahmoud I, Albadri O, Mahmoud SAA, Abdalla OI, Eldigail M, Elagib N, Arnold U, Gutierrez B, Pybus OG, Carter DP, Pullan ST, Jacob ST, Abdallah TM, Gannon B, Fletcher TE. "Kankasha" in Kassala: A prospective observational cohort study of the clinical characteristics, epidemiology, genetic origin, and chronic impact of the 2018 epidemic of Chikungunya virus infection in Kassala, Sudan. PLoS Neglected Tropical Diseases. 2021 Apr 30;15(4):e0009387. doi: 10.1371/journal.pntd.0009387. PMID: 33930028; PMCID: PMC8115788.

10. Siam HA, Elaagip A, Abrahim SAA, Mohammed MH, Noaman OM, Samy AM. A recent chikungunya outbreak associated with the occurrence of Aedes vectors (Diptera: Culicidae) in Kassala state, eastern Sudan in 2018. Parasitology International. 2022 Oct;90:102613. doi: 10.1016/j.parint.2022.102613. Epub 2022 Jun 22. PMID: 35752225.

11. Hyams KC, Oldfield EC, Scott RM, Bourgeois AL, Gardiner H, Pazzaglia G, Moussa M, Saleh AS, Dawi OE, Daniell FD. Evaluation of febrile patients in Port Sudan, Sudan: isolation of dengue virus. The American Journal of Tropical Medicine and Hygiene. 1986;35:860–5.

12. Malik A, Earhart K, Mohareb E, Saad M, Saeed M, Ageep A, Soliman A. Dengue hemorrhagic fever outbreak in children in Port Sudan. Journal of Infection and Public Health. 2011 Mar;4(1):1-6. doi: 10.1016/j.jiph.2010.08.001. Epub 2011 Feb 4. PMID: 21338953.

13. Seidahmed OM, Hassan SA, Soghaier MA, Siam HA, Ahmed FT, Elkarsany MM, Sulaiman SM. Spatial and temporal patterns of dengue transmission along a Red Sea coastline: a longitudinal entomological and serological survey in Port Sudan city. PLoS Neglected Tropical Diseases. 2012;6(9):e1821. doi: 10.1371/journal.pntd.0001821. Epub 2012 Sep 27. PMID: 23029582; PMCID: PMC3459851.

14. Himatt S, Osman KE, Okoued SI, Seidahmed OE, Beatty ME, Soghaier MA, Elmusharaf K. Sero-prevalence of dengue infections in the Kassala state in the Eastern part of the Sudan in 2011. Journal of Infection and Public Health. 2015;8:487–92.

15. Abdalla TM, Karsany MS, Ali AA. Correlation of measles and dengue infection in Kassala, Eastern Sudan. Journal of Medical Virology. 2015;87:76–8.

16. Eldigail MH, Adam GK, Babiker RA, et al. Prevalence of dengue fever virus antibodies and associated risk factors among residents of El-Gadarif state, Sudan. BMC Public Health. 2018;18:921. doi: 10.1186/s12889-018-5853-3.

17. Eldigail MH, Abubaker HA, Khalid FA, et al. Recent transmission of dengue virus and associated risk factors among residents of Kassala state, eastern Sudan. BMC Public Health. 2020;20:530. doi: 10.1186/s12889-020-08656-y.

18. Elaagip A, Alsedig K, Altahir O, Ageep T, Ahmed A, Siam HA, Samy AM, Mohamed W, Khalid F, Gumaa S, Mboera L, Sindato C, Elton L, Zumla A, Haider N, Kock R, Abdel Hamid MM. Seroprevalence and associated risk factors of Dengue fever in Kassala state, eastern Sudan. PLoS Neglected Tropical Diseases. 2020 Dec 9;14(12):e0008918. doi: 10.1371/journal.pntd.0008918. PMID: 33296362; PMCID: PMC7752093.

19. McCarthy MC, Haberberger RL, Salib AW, Soliman BA, El-Tigani A, Khalid IO, Watts DM. Evaluation of arthropod-borne viruses and other infectious disease pathogens as the causes of febrile illnesses in the Khartoum Province of Sudan. Journal of Medical Virology. 1996;48:141–6.

20. Watts DM, el-Tigani A, Botros BA, Salib AW, Olson JG, McCarthy M, Ksiazek TG. Arthropod-borne viral infections associated with a fever outbreak in the Northern Province of Sudan. Journal of Tropical Medicine and Hygiene. 1994;97:228–230.

21. Adam A, Schüttoff T, Reiche S, Jassoy C. High seroprevalence of dengue virus indicates that dengue virus infections are frequent in central and eastern Sudan. Tropical Medicine and International Health. 2018 Sep;23(9):960-967. doi: 10.1111/tmi.13116. Epub 2018 Jul 5. PMID: 29907989.

22. Farnon EC, Gould LH, Griffith KS, Osman MS, Kholy AE, Brair ME, Panella AJ, Kosoy O, Laven JJ, Godsey MS, Perea W, Hayes EB. Household-based sero-epidemiologic survey after a yellow fever epidemic, Sudan. The American Journal of Tropical Medicine and Hygiene. 2010;82:1146–52.

23. Ahmed A, Elduma AH, Magboul BA, Higazi TB, Ali Y. The First Outbreak of Dengue Fever in Greater Darfur, Western Sudan. Tropical Medicine and Infectious Disease. 2019;4.

24. Ahmed A, Eldigail M, Elduma A, Breima T, Dietrich I, Ali Y, Weaver SC. First report of epidemic dengue fever and malaria co-infections among internally displaced persons in humanitarian camps of North Darfur, Sudan. International Journal of Infectious Diseases. 2021 Jul;108:513-516. doi: 10.1016/j.ijid.2021.05.052. Epub 2021 May 24. PMID: 34044142; PMCID: PMC8860570.

25. Ahmed A, Ali Y, Elmagboul B, Mohamed O, Elduma A, Bashab H, Mahamoud A, Khogali H, Elaagip A, Higazi T. Dengue Fever in the Darfur Area, Western Sudan. Emerging Infectious Diseases. 2019 Nov;25(11):2126. doi: 10.3201/eid2511.181766. PMID: 31625864; PMCID: PMC6810194.

26. Elduma AH, LaBeaud AD, Plante J, Plante KS, Ahmed A. High Seroprevalence of Dengue Virus Infection in Sudan: Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease. 2020 Jul 18;5(3):120. doi: 10.3390/tropicalmed5030120. PMID: 32708492; PMCID: PMC7559303.

27. Seidahmed OM, Siam HA, Soghaier MA, Abubakr M, Osman HA, Abd Elrhman LS, Elmagbol B, Velayudhan R. Dengue vector control and surveillance during a major outbreak in a coastal Red Sea area in Sudan. Eastern Mediterranean Health Journal. 2012;18:1217–24.

28. Hamid Hamid, Hiba Musa, Adla Ahmed, Tayseer Abdul Azeez, Asma Adam, et al. (‎2021)‎. Stegomyia indices of Aedes aquatic stages in El Geneina town, western Sudan. Eastern Mediterranean Health Journal, 27 (‎12)‎, 1189 - 1196. World Health Organization. Regional Office for the Eastern Mediterranean. https://doi.org/10.26719/emhj.21.073. License: CC BY-NC-SA 3.0 IGO.

29. State Profile/White Nile. HNO 2022. UNICEF.

30. Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Frontiers in Immunology. 2020 Apr 28;11:695. doi: 10.3389/fimmu.2020.00695. PMID: 32411133; PMCID: PMC7198842.

31. Webb E, Michelen M, Rigby I, Dagens A, Dahmash D, Cheng V, ... Cai E. An evaluation of global Chikungunya clinical management guidelines: a systematic review. EClinicalMedicine. 2022;54. DOI: https://doi.org/10.1016/j.eclinm.2022.100942.

32. Elagali A, Ahmed A, Makki N, et al. Spatiotemporal mapping of malaria incidence in Sudan using routine surveillance data. Scientific Reports. 2022;12:14114. DOI: https://doi.org/10.1038/s41598-022-16706-1.