BMITECHNICAL SERVICES
AGREEMENT
ACCORD DE SERVICES TECHNIQUES

	WHO Reference OMS	
WHO/GSC/GPL	WHO Reference	2015/534975-0
BLOCK 3510	Purchase Order	201265418
JALAN TEKNOKRAT 6	Reg. File	
CYberJaya 63000 Malaysia	Unit Reference	RPPH 14-33

Concerne: EMRO Special Grant 2014-2015 for Research in Priority Areas of Public Health (EMRPPH

Projecting Individualized Absolute Breast Cancer Risk in Iranian women

		Period of reporting	financial
Name and address of institution: Kurdistan university of medical sciences	```Short project title : Projecting Individualized```	From 2-JUN -2015	
		To 30	V-2015
		$\text { report }{ }^{\text {Check }}$	if final
	Absolurte Breqistry file 	YES	
	Iraniapr*pean ID number:	NO	

Institution: non-therapeutic	Principal Investigator:
income of Kurdistan university	Dr Parvaneh Taymoori
of medical sciences Sanandaj	
Islamic republic of Iran	telephone: +98-09183737303 +98- 08 email/courriel:info@muk.ac.ir: parvaneh.tay@gmail.com

Abstract II

$$
1
$$

1

2 Rational 3
3. Objectives:
3.1 General objective:4
3.2 Specific objectives 4
4. Methodology
4.1 Study design 4
4.2 Study setting / data sources 5
4.3 Study population 6
4.4 Samp1ing method6
4.5 Samp1e size6
4.6 Data col1ection6
4.7 Data management p1an6
4.8 Coordination, monitoring and quality control 7
4.9 Ethical considerations 7
4.10 Data Analysis 7
5. Results
5.1 Descriptive results 8
5.2 Univariate and Multivariate logistic regression results 8
5.3 Gail's mode1 8
6. Discussion 11

References 14
Appendix No 116-17

Appendix No 218

Appendix No 3 19-22

Tables 23-5123-51

Abstract

Background: Iranian breast cancer patients are relatively younger than their Western counterparts. The objective of the present study was to investigate risk factors for breast cancer in Iranian women. Method: A case-control study was conducted from 2013 to 2014 in Iran. Demographical data and risk factor related information collected using a short structured questionnaire. Odds ratios (ORs) and 95\% confidence intervals (CIs) were derived from logistic regression analysis. We used SAS 9.2 program to estimate risks and 95% confidence intervals. Gail's mode1 used to estimate within 5 years interval of age for the study participants.

Results: In all, 417 women with breast cancer and 823 control women were interviewed. In multivariate analysis, those women 40 - 49 years were less likely to get breast cancer than those were in older age groups, (OR=.147; CI, . 041 -. 524, $\mathrm{OR}=.183$; CI, .048-. 694 and $\mathrm{OR}=.156$; CI, .029-. 833 respectively). Menopause women more than 45 years than those less than 45 years had greater chance to having breast cancer ($O R=1.86$; CI, 0.1.30-
2.67). There was not significant differences across the groups (case \& control), according to married status. Odds ratio to having breast cancer in women used hormone was .75 more compare with those not using. Odds ratio women with having problem in breast than those without history to having breast cancer to having breast cancer was 1.94 more than those have not experience problem. Odds ratio women without having history of natural biopsy results than those with history to having breast cancer were 207 times greater. Odds ratio women with having history of unnatural biopsy results than those with no history were more likely to get breast cancer. The other variables did not exhibit a significant association with breast cancer. According to Gail's model relative risk (RR) for women less than 50 years compared to those who had all the risk factors than to those woman at the same age and without risk factors was 4.71 ($\mathrm{SD}=2.87$). Relative risk women more than 50 years compared to those who had all the risk factors than to those woman at the same age and without risk factors was 3.77 ($\mathrm{SD}=2.47$). Results of this study found absolute risk mean of developing breast cancer at for those who had risk factors was 1.27 ($\mathrm{SD}=.90$).

Conclusion: The findings of the present study suggest that relative risk women less than 50 years was greater than those more than 50 years $(O R=4.71 \pm 2.87$ versus $O R=3.77 \pm 2.47$).

1. Background

The global context of breast cancer is complex. Although breast cancer incidence is lower in developing countries, the prognosis and survival are poorer relative to developed countries. For example, Iranian women are more likely be diagnosed with locally advanced disease [1]. Disparities in stage detection and survival may be related to differences in health behaviors. Early detection has been thought to be a key factor in reducing mortality from breast cancer: increased use of mammography is viewed as a promising way to reduce 65% of breast cancer deaths [2]. Although implementing mammography use has increased dramatically in developed countries, there are the challenges to find ways to enhance continuous, regular screening practices in developing countries like Iran. Results of several studies showed that, among women 40- year and older range of mammogram was and 5.7% to 12% [3], [4]. In order to improve breast health among women living in developing countries, it is imperative to address factors influencing screening practices. It is assumed that individuals act to prevent or control a disease when they believe it is likely they are at risk develop a disease (perceived estimated risk). Individualized Breast Cancer risk may contribute to elevated breast cancer screening behaviors [5, 6].

Absolute risk is used to describe an individual's likelihood of developing breast cancer. Some factors contribute to increase including the older age, family history, reproductive history (such as menstrual and childbearing history), race/ethnicity, and other factors. The absolute risk of breast cancer is much higher for women who have inherited mutations in the
genes known as BRCA 1 or BRCA 2. For women with a BRCA 1 mutation, the risk of developing breast cancer by age 70 ranges from 55-65\%. This means that out of every 100 women who have this mutation, anywhere from about 55 to 65 of them can expect to develop breast cancer should they live to age 70. For women with a BRCA 2 mutation, the risk is a bit lower, at 45\%[7]. Relative risk is a number or percentage that compares one group's risk of developing breast cancer to another's. There known risk factors that increase relative risk for breast cancer. For example, age at menarche, age at first delivery, family history of breast cancer, and body mass index (BMI) (in postmenopausal women) [7]. Estimates of absolute risk can be used more correctly to estimate the risks and assistances of an intervention to prevent breast cancer if that intervention has side effects that increase the risks of other unfavorable health outcomes. For example, tamoxifen not only prevents breast cancer, but it also causes certain adverse events [8]. Many women have unrealistic concepts of their risks that can lead to poor management decisions. A woman with an overestimate of risk might take an extreme preventive action, such as prophylactic mastectomy, that is not necessary by her exact risk[8]. If the estimated risk is less than the actual value may prevent women from adopting appropriate screening. This has important implications for clinical cases [9]. Women at risk for breast cancer was estimated to be less than the actual value are less likely to follow medical advice and access in early detection and prevention methods [10]. It is likely that women with moderate size risk suffer unnecessary anxiety by overestimated risk [8]. Health care providers can use risk assessment tool to estimate a person's risk of developing breast cancer and provide advice
tailored to the risk factors on and screening behaviors. Absolute risk models may also play a role $i n$ the productive allocation of prevention resources under cost constraints [11]. Disease prevention attempts are often inhibited by restricted resources, and one approach to assign those resources is to direct them to those who stand to help the most, who are usually those at the highest risk of the disease[8, 12]. It is more important when there is not sufficient money to support a program of screening mammography for an entire population [11].

The models of absolute breast cancer risk are beneficial in clinical management and disease prevention [9, 13, 14]. In addition to giving important overall viewpoint to patients, such models can be used to assess risks and benefits of a preventive outcome formally [15, 16]. In the context of disease prevention, these models are useful for planning intervention trials, and for measuring the potential absolute reductions in disease risk that might result from reductions in modifiable exposures in the population [8, 17].

Rayna K. Matsuno showed by using the Data from 589 Asian and Pacific Islander American (APA) women with breast cancer and 952 women without breast cancer (control subjects) computed relative and attributable risks based on the age at menarche, number of affected mothers, sisters, and daughters, and number of previous benign biopsies. Relative and attributable risks for APA women were comparable to those in Breast Cancer Risk Assessment Tool (BCRAT). The authors concluded their developed model was calibrated to ethnicity-
specific incidence rates can be used for projecting absolute invasive breast cancer risk and for counseling APA women[16].

Mitchell H. Gail developed a model for projecting absolute risk of invasive breast cancer in African American women. Data from 1607 women with invasive breast cancer and 1647 control subjects were used to compute relative and attributable risks that were based on age at menarche, number of affected mother or sisters, and number of previous benign biopsy examinations. Results showed that 30.3% of African American women would have had 5-year invasive breast cancer risk. Using The Tool is recommended for counseling African American women regarding their risk of breast cancer[18].

Mitche11 H. Gail de*nes absolute risk and some of its properties, and presents applications in breast cancer counseling and prevention. In these applications, it is important that the risk model be well calibrated, namely that it accurately predicts the numbers of women who will develop breast cancer in various subsets of the population. It also is discussed the potential use of risk models in allocating prevention resources under cost constraints and the risk assessment should not be expensive in comparison with the intervention [8].

Mitchell H. Gail suggested Absolute Risk Models for Subtypes of Breast Cancer can project the absolute risks of breast cancer subtypes may help identify women who could benefit from specific preventive interventions and improve estimates of total breast cancer risk [10].

Kimiko Ueda made individualized tool of developing breast cancer within 10-20 years and until life expectancy for Japanese women by multiplying the relative risk for each risk factor combination by the cumulative risk for the
reference group. The risk factors used were age at menarche, age at first delivery, family history of breast cancer, and body mass index (BMI) (in postmenopausal women). The relative risk by menopausal status for each risk factor combination was estimated from a case control study. Results indicated the highest risk group had about a 5 times higher risk probability of developing breast cancer than the general population at initial age 40, within 10- 20 years, and until life expectancy. The cumulative risk of breast cancer varied according to individuals' risk factors among Japanese women. The availability of concrete individualized risk estimation figures will be of use to health care providers in encouraging Japanese women to seek counseling and to adopt self-control of body weight as a primary preventive measure, as well as to have breast cancer screening [16].
2. Rationale:

Absolute risk' is the likelihood that an individual with a given set of risk factors and free of the disease of interest at age x will develop disease before a subsequent age $x+t$, where t is the period of the interval over which risk is projected. Breast Cancer Absolute Risk Assessment Tools (BCARAT) has been used for counseling women and designing breast cancer prevention trials. Although BCARAT includes separate risk-prediction models for American and African American women, projections of absolute risk for Iranian women are based on data from those women only. Therefore, BCARAT includes a disclaimer for Iranian women. Inaccurate projections could result in misleading counseling of Iranian women and might mistakenly render some of them as eligible or ineligible for participation in breast cancer prevention
trials. As a result, It seems developing a model for Iranian women with variety of ethnicities include Kurdish, Balouch, Arab, Azeri Turkish, Turkmens, and Persians would provide a plenty of information for developing cancer prevention strategies.
3. Objectives:
3.1 General objective: Developing Individualized Absolute Invasive Breast Cancer Risk in Iranian women

3.2 Specific objectives:

1. Calculate of breast cancer relative risk among Iranian women across age groups.
2. Calculate of breast cancer ethnicity-specific relative risk in Iranian women.
3. Calculate of breast cancer attributable risk in Iranian women across age groups.
4. Calculate of breast cancer ethnicity-specific attributable risk in Iranian women.
5. Methodology
4.1 Study design

This research conducted as a Nested Case Control Study. Other estimates obtained using data from the cancer registry system in Iran, Iranian death registration system, and other studies, which had determined the burden of
breast cancer in the country.

4.2 Study setting / data sources

The data required for the nested case control study collected from Gilan, Kurdistan, Alborz, Hormozgan, Kermanshah provinces, which selected based on sampling methods. Absolute risk estimated on the basis of this information and through combining this information with other data which collected from the cancer registry data of Iran, the Iranian death registration system, and studies which determined the burden of breast cancer in the country [8, 18, 19].

4.3 Study population

The populations of this study were Iranian women. To select cases, the population of this study included the cancer patients; moreover, to choose the controls, sampling conducted among neighbors of the selected cases. The cases with breast cancer included those who pathologically diagnosed with cancer, as defined by the cancer care system of the country. The controls selected from among the neighbors of selected cases, who were at the same age.
4.4 Sampling method

This study designed so that to meet the study requirements in Iran. Accordingly, sampling method followed:

Country divided into five regions, including North, South, West, East, and the center. From each region, one province selected at random. The research team studied the list of patients with breast cancer, levied in each
city, who had been registered by the cancer registry system over the past two years. In proportion to the contribution of each province in each region, a specified number of patients selected from the list. For each case, two matched controls selected from among the neighbors of the selected cases who were the same age group [8, 16].
4.5 Sample size (sample size assumptions / estimation / size)

According to data from cancer registries in 1392 - 1393 the fellow provinces selected in the following table:

	The selected provinces	The number of breast cancer cases in 1392-93	The needed number of cases in 139293	The needed number of controls in 1392-93
1	Gilan	350	120	240
2	Kurdistan	145	52	104
3	Alborz	314	108	216
4	Hormozgan	150	51	102
5	Kermanshah	200	69	138
Total	-	1159	400	800

The sample size, considering the number of cases of breast cancer in selected provinces in 1392-93, the sample size of patients and controls were as follows.

The procedures operated as follows:

1. A list of patients in 1392 to 1393 prepared in which the order were numbered from 1 to the last patients.
2. From the list of patients, the numbers of patients for each province based on the above table specified cases (patients with breast cancer) were randomized selected.
3. Based on the address of patents, visited and the questionnaire was completed.
4. For each case, two controls of the same age group were selected from their neighbors.
4.6 Data collection

Data collection method
Data collected via interviews, and using the questionnaire designed for this purpose (Appendix file No 1). The designed questionnaire assessed demographic factors and breast cancer risk factors. Breast cancer defined consistent with the definitions by the cancer registration system and pathologic diagnosis methods.
4.7 Data management p1an

We used the data collected from 417 women with breast cancer and 823 women without breast cancer to calculate the relative and attribute risks by age at menarche, race, number of affected mothers, sisters and daughters, and number of previous benign biopsies.
4.8 Coordination, monitoring and quality control

The research team involved individuals with different specialties. At first, they wrote a protocol for the implementation of the project. In this protocol, the interviews and data collection methods determined. The research team considered advantage of all possible tools that would improve the quality of the study outcomes.
4.9 Ethical considerations:

As this research involved human subjects, the research ethics committee reviewed research on human subjects. We received an ethical approval for this research (Appendix file No 2).The written informed consent from human subjects needed in this research. Therefore, "informed consent form" used in our research. A copy of the "informed consent" form "used in the research is attached (Appendix file No 3).
4.10 Data Analysis

Al1 follow steps were performed using SPSS version 22 and the significance level of 5% was reported. In the first stage descriptive results as frequencies and percentages for categorical variables and as mean and standard deviation for continuous variables reported (Tables 1 to 18), the quantitative and qualitative variables associated with breast cancer, were
classified on the basis of documents found in previous studies [9]. The quantitative variables were woman's age in year, age at the start of menstruation, age at the first live birth of a child, woman's age at menopause in year and number of previous breast biopsies. The qualitative variables included individual's race, the presence of atypical hyperplasia in any previous breast biopsy specimen, and the history of breast cancer among her first-degree relatives (mother, sisters, and daughters). The other variable contained use of hormone and married status (Tables 1-18).

Univariate logistic regression analysis was performed to calculate odds ratios (ORs) and to examine the predictive effect of each factor on risk for breast cancer, P < 0.05 was considered statistically significant. Those risk factors that were significantly associated with breast cancer were entered into a forward selection multivariate logistic regression analysis.
5. Results
5.1 Descriptive results
In the first stage descriptive results as frequencies and percentages for categorical variables and as mean and standard deviation for continuous variables have reported in tables 1-18.
5.2 Univariate and Multivariate logistic regression results

The results of univariate logistic regression analysis are shown in Tables 19 to 28 . Those lived in rural areas were less likely to get breast cancer than urban citizens ($O R=1.52$; CI, 0.1.08-2.15). Those women 40 - 49 and ≥ 70 years than those less than 40 years were less likely to get breast cancer than urban citizens $(O R=1.32 ; C I, 0.1 .01-1.85$ and $O R=1.78 ; C I$,
0.1.00- 3.18 respective1y). Menopause women more than 45 years than those less than 45 years had greater chance to having breast cancer ($O R=1.86$; CI, 0.1.30-2.67). The comparison results was not significant across the groups (case \& control), according to BMI categories [20]. BMI index values categorized below 18.5 (underweight), 18.5-24.9 (normal), 25.0-29.9 (Overweight) and 30.0 and above Menopause women more likely to get breast cancer than those no menopause ($O R=2.47$; CI, 1.94-3.14). There was not significant differences across the groups (case \& control), according to married status. Odds ratio to having breast cancer in women used hormone was . 75 more compare to those not using. Odds ratio women with having problem in breast than those without history to having breast cancer to having breast cancer was 1.94 more than women have not had problem. Odds ratio women without having history of natural biopsy results than those with history to having breast cancer were 207 times greater. Odds ratio women with having history of unnatural biopsy results than those with no history were more likely to get breast cancer. The other variables did not exhibit a significant association with breast cancer.

The results of forward selection multivariate logistic regression displayed in Table 29, for variable location, city classification, for age in categories of 5 years, age less than 45 years as basis class considered as basis class. In terms of age of menopause, age less than 45 years, for marital status, single status, not having history of natural biopsy for the history of hyperplasia biopsy, having history of unnatural biopsy and for hormone use, not using were considered as basic class. The BMI index 18.524.9 range considered as basic class. The odds ratio of other classes
compared to basic class calculated reported. In addition, a 95\% confidence interval for the odds ratio associated with the probability value detected. In order to provide more precise the estimates of the parameters using 1000 bootstrap subsamples re-estimation of parameters, Orthogonabias and the probability value have been reported (Tables 19 to 28). Results of logistic regression used for all variable are presented in Table 29 was similar univariate logistic regression used for all variables except location, BMI status, married status, hormone using, having problem history in breast.

5.3 Gail's mode1

Absolute risks calculated via combining this information with ethnicityspecific data so that to create Iranian Breast Cancer Study mode1 (IBCS model). In addition, we used a multivariable relative risk model such as that described by Gail and Logistic Regression to find log odds parameters for the covariates.

We used SAS 9.2 program to estimate risks and 95% confidence intervals. In this model, if data on national incidence required we used the data from the National Cancer Registry System, and if data on deaths by breast cancer required we used the data from national mortality registry system. In the next phase, Gail's model used to estimate within 5 years interval of age for the study participants. In Gail's model, eight variables entered as follow: early age and projection age. The should be in between 20 and 90 years, in current study a range of 5 years considered as projection age. Information having biopsy history and biopsy with atypical hyperplasia was coded as Yes and No. Next variables included age at first menarche and age at first live birth that were numbers correct. The last variable, in Gail's model there are 11 levels for race. Level 1 to 4 including white, black, Hispanic and American. The other races including Japanese, Chinese, Filipino, and other Asian races. In this study, the eleventh level (the other Asian races) considered for the participants (SAS output tables).

Based on the above risk factors and categorization, the total number of possible combinations (groups) is $/=3 \times 2 \times 3 \times 4 \times 3=216$. The baseline agespecific hazard rate defined as the hazard rate for a patient who does not have identified risk factors. It is computed as the product of the observed age-specific composite hazard rate times the quantity of 1 minus the absolute risk[21]. Then, mean and standard deviation relative risk age and more than 50 years calculated (Table 30). According to Gail's model relative risk (RR) for women less than 50 years compared to those who had all the risk
factors than to those woman at the same age and without risk factors was $\mathbf{4 . 7 1}$ ($\mathrm{SD}=2.87$). Relative risk women more than 50 years compared to those who had all the risk factors than to those woman at the same age and without risk factors was 3.77 (SD=2.47). Results of this study found absolute risk mean of developing breast cancer at for those who had risk factors was 1.27 (SD = .90) (Table 30). Given to reporting the errors in the 216 class required to spend more time, value this index has reported for the first 100 people. As well, absolute risk index and the average of the first women to 100 cases have reported.

6. Discussion

The mean age of patients with breast cancer in this study was $48.07 \pm$ (12.15) years, which is consistent with the findings of previous studies in Iran and confirms a young age for breast cancer development in Iranian women [22].

The results showed high proportion of young breast cancer cases (31\%). With regard to the findings from the current study, one may dispute that the relatively high proportion of young breast cancer cases in Iran is most likely due a to a young population structure and to a combination of high age at menarche and low age at first pregnancy, which are protective in later life [23]. Evidence from the USA [24] also suggests that, in some Asian subgroups such as the Vietnamese, women diagnosed with breast cancer tend to be younger than those from other racial or ethnic groups, with half of the diagnoses occurring in women younger than 50 years; this needs further exploration.

The findings of the present study are inconsistent with the published reports related to BMI and its association with breast cancer [25-27]. In the present study, the daily intake of fat was not assessed but an evaluation of fat intake was made through questions regarding the consumption of fatty food, such as fried food, high-fat dairy products, and mayonnaise, and the predominant method of cooking in the home. It appears that further research is needed on this issue.

There was no significant link between BMI and breast cancer incidence. One possible reason for the lack of a significant relationship in the present study is the measuring of BMI when a patient is already suffering from breast cancer; future studies should consider this matter. In the literature results of association between increased BMI and breast cancer incidence is mixed. For example in a study observed significantly stronger association between increased BMI and breast cancer incidence in the Asia-Pacific group (RR 1.18:1.11-1.26) than in European-Australian (1.05:1.00-1.09) and NorthAmerican group (1.06:1.03-1.08) (meta-regression p<0.05). No association between increased BMI and pancreatic cancer incidence (0.94:0.71-1.24) was shown in the Asia-Pacific group (meta-regression p<0.05), whereas positive associations were found in other two groups [28]. In a meta-analysis including 15 cohort studies involving 2,104,203 subjects and $3,414,806$ person-years and 35 case-control studies involving 71,216 subjects. There was an inverse non-significant correlation between $B M I$ and breast cancer risk during premenopausal period : $O R=0.93$ (95\% CI 0.86, 1.02); RR(i) = 0.97 (95\% CI 0.82, 1.16); and RR(a) = 0.99 (95% CI 0.94, 1.05), but a direct and significant correlation during
postmenopausal period: $O R=1.15$ (95% CI 1.07, 1.24); $\operatorname{RR}(i)=1.16$ (95% CI $1.08,1.25) ;$ and $R R(a)=0.98$ (95% CI $0.88,1.09$) [29].

Breast cancer patients in Iran are relatively young, and the findings presented here suggest that women 60-69 years than those 1 ess than 40 years were the most likely to get breast cancer ($O R=.183$; CI, 0.48 - 0.69). This is in accordance with other research findings indicating that older age as a strong risk factor to develop breast cancer [30].

Our results supported early menopause has been linked with a lower risk of breast cancer $[31,32]$. Considerable research effort has been directed to understanding how the process of aging is linked to breast cancer development. Of note, the greatest increase in rate of breast cancer occurs during the pre- and early postmenopausal years [33].

The previous investigations revealed that breast cancer risk is concentrated in the 40% of postmenopausal women for whom the process of lobular involution (LI) is delayed [34]. Our findings presented here reveal that women without having history of natural biopsy results than those with history to having breast cancer were 25 times greater. Radisky's study found among women with multiple biopsies, there was a significant association of higher breast cancer risk among those with involution stasis (lack of progression, HR 1.63) as compared with those with involution progression, $p=0.036$. The majority of women in the multiple biopsy cohort showed progression of lobular involution (LI) status between benign biopsies, and extent of progression was highest for women who were in the premenopausal age range at initial biopsy. Progression of LI status between initial and subsequent biopsy was associated with decreased breast cancer
risk [32].
The lack of significant relations between breast cancer and the other variables studied was unexpected. For example, studies have shown that past oral contraceptive use is associated with a somewhat higher OR women who have a family history of breast cancer [23].

The proposed SAS macro makes it easy to implement the Gail model to assess the risk of breast cancer. By using several basic key risk factors, we can estimate a patient's breast cancer risk over a pre-determined time interval.

Absolute risk is used to describe an individual's likelihood of developing breast cancer. It is based on the number of people who will develop breast cancer within a certain time period. Absolute risk also can be stated as a percentage. Our results showed absolute risk mean of developing breast cancer at for those who had risk factors was 1.27 ($\mathrm{SD}_{\mathrm{I}}=.90$). Absolute risk cannot specify likelihood of developing breast cancer in individuals not exposed to risk factors. In facts, it does not indicate that exposure to risk factors increased risk of developing breast cancer or not. In total absolute risk does not help to carry out an explicit comparison.

The relative risk (RR) for women less than 50 years compared to those who had all the risk factors than to those woman at the same age and without risk factors was 4.71 ($\mathrm{SD}=2.87$) . while relative risk women more than 50 years compared to those who had all the risk factors than to those woman at the same age and without risk factors was 3.77 ($\mathrm{SD}=2.47$). Our results suggested that women at age < 50 years had more chance of developing breast cancer than those who were > 50 years. Relative risk is a number or percentage that
compares one group's risk of developing breast cancer to another's. This is the type of risk frequently reported by research studies, which often compare groups of women with different characteristics or behaviors to determine whether one group has a higher or lower risk of breast cancer than the other (either as a first-time diagnosis or recurrence). Understanding relative risk can help to answer an important question: If a woman make certain lifestyle choices or have certain treatments, how much will she increase or decrease her risk of developing breast cancer or having a recurrence?

Conclusion
The study revealed that the risk factors for breast cancer among women in Iran are related to the relative risk women less than 50 years was greater than those more than 50 years $(O R=4.71 \pm 2.87$ versus $O R=3.77 \pm 2.47$). The findings of the present study suggest menopause age more than 45 years may have an impact on the incidence of breast cancer in Iranian women (OR= 1.86; CI, 0.1.30-2.67). Therefore, the provision of menopause age more than 45 years for early breast cancer detection is recommended. The 1ack of significant associations between BMI status breast cancer and the other variables studied was unexpected. The daily intake of fat was not assessed but an evaluation of fat intake was made through questions regarding the consumption of fatty food, such as fried food, high-fat dairy products, and mayonnaise, and the predominant method of cooking in the home. It appears that further research is needed on this issue. Although the results cannot be generalized, the findings suggest that the association between some risk factors for breast cancer may differ in Iran as compared with western countries and familial breast cancer in young breast cancer patients deserves
further investigation.

Acknowledgment
We thank the EMRO Special Grant 2014-2015 for Research in Priority Areas of Public Health (EMRPPH for providing financial support, Project ID number: 201265418 TSA.

References

1. Harirchi I, et al., Twenty years of breast cancer in Iran: downstaging without a formal screening porgram. . Annals of Oncology. , 2011. 22(1): p. 93-7.
2. IS., F., Fixed and modifiable risk factors for breast cancer. International journal of clinical practice, 2001. 55(8): p. 527-30.
3. Taymoori, P., Y. Molina, and D. Roshani, Effects of a Randomized Controlled Trial to Increase Repeat Mammography Screening in Iranian Women. Cancer nursing, 2014.
4. Taymoori, P., T. Berry, and F. Farhadifar, Predicting mammography stage of
adoption among Iranian women. Journal of Education and Health Promotion, 2012. 1(1): p. 13.
5. Hay, J.L., T.R. Buckley, and J.S. Ostroff, The role of cancer worry in cancer screening: a theoretical and empirical review of the 7iterature. Psycho *Oncology, 2005. 14(7): p. 517-534.
6. Glanz K, et al., Health behavior and health education: theory, research, and practice. 2nd ed ed. 2008, San Francisco Jossey-Bass.
7. breastcancer.org. What are the risk factors for breast cancer? 2016 [cited 2016 02/22/2016]; Available from: http://www.breastcancer.org/symptoms/understand_bc/risk/factors.
8. Gail, M.H., Personalized estimates of breast cancer risk in clinical practice and public health. Statistics in medicine, 2011. 30(10): p. 1090-1104.
9. Gail, M.H., Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. Journal of the National Cancer Institute, 2008. 100(14): p. 1037-1041.
10. Gail, M.H., et al., Absolute risk models for subtypes of breast cancer. Journal of the National Cancer Institute, 2007. 99(22): p. 1657-1659.
11. Gail, M.H. and P.L. Mai, Comparing breast cancer risk assessment mode1s. Journal of the National Cancer Institute, 2010. 102(10): p. 665-668.
12. Gail, M.H. and J.P. Costantino, Validating and improving models for projecting the absolute risk of breast cancer. Journal of the National Cancer Institute, 2001. 93(5): p. 334-335.
13. Gail, M.H. and R.M. Pfeiffer, On criteria for evaluating models of absolute risk. Biostatistics, 2005. 6(2): p. 227-239.
14. Bellcross, C., Approaches to applying breast cancer risk prediction models in clinical practice. Community Oncology, 2009. 6(8): p. 373-382.
15. Newman, L.A. and V.G. Voge1, Breast cancer risk assessment and risk reduction. Surgical Clinics of North America, 2007. 87(2): p. 307-316.
16. Matsuno, R.K., et al., Projecting individualized absolute invasive breast cancer risk in Asian and Pacific Islander American women. Journal of the National Cancer Institute, 2011.
17. Schonfeld, S.J., et al., Effect of changing breast cancer incidence rates on the calibration of the Gail mode7. Journal of Clinical Oncology, 2010. 28(14): p. 2411-2417.
18. Gail, M.H., et al., Projecting individualized absolute invasive breast cancer risk in African American women. Journal of the National Cancer Institute, 2007. 99(23): p. 1782-1792.
19. The Ministry of Health and Medical Education, C.R.R., Cancer Registry, the management of non-communicab7e diseases,. 1388: Iran.
20. Zhang, J., et al., Poor uterine contractility in obese women. BJOG: An International Journal of Obstetrics \& Gynaecology, 2007. 114(3): p. 343-348.
21. Chiang, A., Implementation of Breast Cancer Risk Assessment Tool using SAS®.
22. Hosseinzadeh, M., et al., Risk factors for breast cancer in Iranian women: a hospital-based case-control study in tabriz, iran. Journal of breast cancer, 2014. 17(3): p. 236-243.
23. Ebrahimi, M., M. Vahdaninia, and A. Montazeri, Risk factors for breast cancer in Iran: a case-control study. Breast cancer research, 2002. 4(5): p. R10.
24. Lin, S.S., J.C. Phan, and A.Y. Lin, Breast cancer characteristics of Vietnamese women in the Greater San Francisco Bay Area. Western journal of medicine, 2002. 176(2): p. 87.
25. Xia, X., et al., Body mass index and risk of breast cancer: a nonlinear doseresponse meta-analysis of prospective studies. Scientific reports, 2014. 4: p. 7480.
26. Renehan, A.G., et al., Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. The Lancet,
27. 371(9612): p. 569-578.
28. Jemal, A., et a1., G7obal cancer statistics. CA: a cancer journal for clinicians, 2011. 61(2): p. 69-90.
29. Wang, J., et a1., Associations of body mass index with cancer incidence among populations, genders, and menopausal status: A systematic review and metaanalysis. Cancer Epidemiology, 2016. 42: p. 1-8.
30. Cheraghi, Z., et a1., Effect of body mass index on breast cancer during premenopausa7 and postmenopausal periods: a meta-analysis. PloS one, 2012. 7(12): p. e51446.
31. Ritte, R., et al., Adiposity, hormone rep7acement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast cancer research, 2012. 14(3): p. 1-14.
32. Clemons, M. and P. Goss, Estrogen and the risk of breast cancer. N eng1 J med, 2001. 344(4): p. 276-285.
33. Radisky, D.C., et a1., Natural history of age-re7ated 7obu7ar involution and impact on breast cancer risk. Breast cancer research and treatment, 2016. 155(3): p. 423-430.
34. Benz, C.C., Impact of aging on the biology of breast cancer. Critical reviews in oncology/hematology, 2008. 66(1): p. 65-74.
35. Milanese, T.R., et al., Age-re7ated 7obu7ar involution and risk of breast cancer. Journal of the National Cancer Institute, 2006. 98(22): p. 1600-1607.

Appendix No 1

Questionnaire

1. woman's age in year.
2. woman's age at the time of her first menstrual period in year.
3. woman's age at the time of her first live birth of a child in year.
4. woman's age at menopause in year.
5.Useofbirthcontrol Mes

No
If yes, how long (in month/year)
6. Use of hormone replacement therapy: \square Yes No

If yes, how long (in month/year)
7. Drinking alcohol
8. Smoking:

Yes
9. Status of Married:
10. History of breast-feeding:

No

If yes: how many
If yes: Long time in each time (in month/year)
11. Number of full pregnancy:
12. How many of the woman's first-degree relatives - mother, sisters, daughters - have had breast cancer?
13. Has the woman ever had a breast biopsy?

13 a. How many breast biopsies (positive or negative) has the woman had?

13 b . Has the woman had at least one breast biopsy with atypical hyperplasia?
14. woman's race/ethnicity?

14 a. What is the sub race/ethnicity?
15. Body mass index (BMI):

Weight:
Height:

```
    Appendix No 2.
```



```
hancellor
V in Researc h
14/5217/4100 i Apr 26, 2015 Affa
To whom it may concern; ir
Kurdistan University of Medical Sciences Review Board confirms that the research entitled "Projecting Individualized Absolute Breast Cancer Risk in Iranian women" has been approved, and monitored scientifically and ethically in Institutional Review Board (IRB) of this university (MUK.REC.1394.4). Farzin Rezaie
Kurdistan University of Medical Sciences
Vice-Chancellor in Research Affair
```

Kurdistan University of Medical Sciences
Vice-Chancellor in Research Affair 66177-13446 Pasdaran Ave,

Sanandaj, Iran. www.muk.ac.ir

Appendix No 3.

INFORMATION CONSENT KURDISTAN UNIVERSITY OF MEDICAL SCIENCES

This Informed Consent Form is for the women we are inviting to participate in research on Estimate Individualized Absolute Breast Cancer Risk in Iranian women. The title of our research project is " Projecting Individualized Absolute Breast Cancer Risk in Iranian women'.

Name of Principal Investigator: Dr Parvaneh Taymoori

Name of Organization: Kurdistan University of Medical Sciences

Name of Sponsor: world health organization
Name of Proposal and version: Projecting Individualized Absolute Breast Cancer Risk in Iranian women

Introduction

I am Dr Parvaneh Taymoori, working for the Kurdistan University Of Medical Sciences Research Institute. We are doing research on Breast Cancer disease, which is very common in this country. I am going to give you information and invite you to be part of this research. You do not have to decide today whether or not you will participate in the research. Before you decide, you can talk to anyone you feel comfortable with about the research.

There may be some words that you do not understand. Please ask me to stop as we go through the information and I will take time to explain. If you have questions later, you can ask them of me, or the study staffs.

Purpose of the research
Absolute risk' is the likelihood that an individual with a given set of risk factors and free of the disease of interest at age x will develop disease. Breast Cancer Absolute Risk Assessment Tools (BCARAT) has been used for counseling women and designing breast cancer prevention trials. Although BCARAT includes separate risk-prediction models for American and African American women, projections of absolute risk for Iranian women are based on data from those women only. Therefore, BCARAT includes a disclaimer for Iranian women. Inaccurate projections could result in misleading counseling of Iranian women and might mistakenly render some of them as eligible or ineligible for participation in breast cancer prevention trials. The reason we are doing this research is to calculate BCARAT for Iranian women

Benefits

If you participate in this research, there may not be any benefit for you but your participation is likely to help us find the answer to the research question. There may not be any benefit to the society at this stage of the research, but future generations are likely to benefit.

We will give you 3.5 \$ for lost work time. You will not be given any other money or gifts to take part in this research.

Confidentiality

With this research, something out of the ordinary is being done in your community. It is possible that if others in the community are aware that you are participating, they may ask you questions. We will not be sharing the identity of those participating in the research.

The information that we collect from this research project will be kept confidential. Information about you that will be collected during the research will be put away and no-one but the researchers will be able to see it. Any information about you will have a number on it instead of your name. On1y the researchers will know what your number is and we will lock that information up with a lock and key. It will not be shared with or given to anyone except World Health Organization.

Sharing the Results

The knowledge that we get from doing this research will be shared with you through community meetings before it is made widely available to the public. Confidential information will not be shared. There will be small meetings in the community and these will be announced. After these meetings, we will publish the results in order that other interested people may learn from our research.

Right to Refuse or Withdraw
You do not have to take part in this research if you do not wish to do so and refusing to participate will not affect your treatment at this clinic in any way. You will still have all the benefits that you would otherwise have at this clinic. You may stop participating in the research at any time that you wish without losing any of your rights as a patient here. Your treatment at this clinic will not be affected in any way.

Who to Contact
1.1.1 If you have any questions, you may ask them now or later, even after the study has started. If you wish to ask questions later, you may contact any of the following:
1.1.2 Dr Parvaneh Taymoori: POSTAL ADDRESS:
1.1.3 Kurdistan University of Medical Sciences, Sanandaj,Iran, PO Box 66177-13391, Pasdaran Street, Sanandaj, Iran Parvaneh.tay@gmail.com).
$\begin{array}{ccc}1.1 .4 & \text { TEL: 98- } 08731827468 & 09183737303 \\ \text { FAX: } 98-87-33625131 & \end{array}$

This proposal has been reviewed and approved by Ref.WR/IRN/11/63, which is a committee whose task it is to make sure that research participants are protected from harm. If you wish to find about more about the IRB, contact

1.2 World Health OrganizationRegional Office for the Eastern Mediterranean, (WHO/EMRO). 12 ${ }^{\text {TH }}$ Floor, building of the Minstary Of Health \& Medical Education, Simaye-Iran street, phase 5, Shahrak-e-Qods,Tehran . 1467664951

P.O.Box: 1465-1565

Te7: +9821(88363979, 88363980, 88363718
Fax: +9821 88364100
E-mail:whoteh@ira. emro. who. int
It has also been reviewed by the Ethics Review Committee of the World Health Organization (WHO), which is funding/sponsoring/supporting the study.

Certificate of Consent

I have read the foregoing information, or it has been read to me. I have had the opportunity to ask questions about it and any questions that I have asked have been answered to my satisfaction. I consent voluntarily to participate as a participant in this research.

Print Name of Participant \qquad
Signature of Participant \qquad
Date \qquad
Day/month/year

If illiterate

I have witnessed the accurate reading of the consent form to the potential participant, and the individual has had the opportunity to ask questions. I confirm that the individual has given consent freely.

Print name of witness AND

Thumb
print of participant
Signature of witness \qquad
Date \qquad

Day/month/year
I confirm that the participant was given an opportunity to ask questions about the study, and all the questions asked by the participant have been answered correctly and to the best of my ability. I confirm that the individual has not been coerced into giving consent, and the consent has been given freely and voluntarily.

A copy of this ICF has been provided to the participant.
Print Name of Researcher/person taking the consent \qquad

Signature of Researcher /person taking the consent \qquad
Date \qquad
Day/month/year

Table 1. Number of cases and controls across selected provinces

Table 2. Number and age percent groups across cases and control groups

| Age groups | | Case | |
| :--- | :---: | :---: | :---: | :---: |

Table 3. Mean and SD of participant's age across case and control groups

	Mean (SD)
Contro1	$45.82(12.12)$
Case	$48.07(12.15)$
Tota1	$45.0(14.14)$

Table 4. Number and age percent groups across case and control groups and selected provinces

group(case or control)		City					Total
		Kermanshah	Alborz	Kurdist an	Hormozga n	Gilan	
$\left.\right\|_{1} ^{\text {contro }}$	<40 nt Cou	137	59	23	44	50	313
	$\begin{aligned} & \text { within } \\ & \text { City } \end{aligned}$	65.2\%	28.0\%	22.3\%	77.2\%	20.8\%	38.1\%
	40-49 nt Cou	73	58	30	8	52	221
	$\begin{aligned} & \text { within } \\ & \text { City } \\ & \hline \end{aligned}$	34.8\%	27.5\%	29.1\%	14.0\%	21.7\%	26.9\%
	$50-59 \text { nt } \quad \mathrm{Cou}$	0	57	26	4	76	163
	$\substack{\text { within } \\ \text { City }}$.0\%	27.0\%	25.2\%	7.0\%	31.7\%	19.9\%
	60-69 nt Cou	0	32	16	0	45	93
	\qquad	.0\%	15.2\%	15.5\%	.0\%	18.8\%	11.3\%
		0	5	8	1	17	31
	$\begin{aligned} & \text { \% } \\ & \text { within } \\ & \text { City } \end{aligned}$.0\%	2.4\%	7.8\%	1.8\%	7.1\%	3.8\%

[^0]| | Total | Cou | 210 | 211 | 103 | 57 | 240 | 821 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | within City | 100.0\% | 100.0\% | 100.0\% | 100.0\% | 100.0\% | 100.0\% |
| case | <40 | $\text { nt } \quad \text { Cou }$ | 68 | 19 | 11 | 8 | 24 | 130 |
| | | within City | 64.2\% | 17.3\% | 21.2\% | 28.6\% | 19.8\% | 31.2\% |
| | 40-49 | $\text { nt } \mathrm{Cou}$ | 38 | 36 | 17 | 7 | 28 | 126 |
| | | within City | 35.8\% | 32.7\% | 32.7\% | 25.0\% | 23.1\% | 30.2\% |
| | 50-59 | Cou | 0 | 26 | 12 | 7 | 37 | 82 |
| | | within City | . 0% | 23.6\% | 23.1\% | 25.0\% | 30.6\% | 19.7\% |
| | $60-69$ | Cou | | 22 | 8 | 3 | 23 | 56 |
| | | within City | . 0% | 20.0\% | 15.4\% | 10.7\% | 19.0\% | 13.4\% |
| | $>=70$ | Cou | 0 | 7 | 4 | 3 | 9 | 23 |
| | | within City | . 0% | 6.4\% | 7.7\% | 10.7\% | 7.4\% | 5.5\% |
| | Total | $\text { nt } \quad \text { Cou }$ | 106 | 110 | 52 | 28 | 121 | 417 |
| | | within City | 100.0\% | 100.0\% | 100.0\% | 100.0\% | 100.0\% | 100.0\% |

Table 5. Education level of participants across case and control groups

Education level	N	Case	Percent	N	Control
		271	65.0	543	Percent
lower diploma	93	22.3	185	66.0	
diploma	42	10.1	85	22.5	
undergraduate	8	1.9	5	10.3	
post graduate	414	99.3	818	.6	
Total				99.4	

Table 6. Mean and SD of participant's age first menstrual period across case and control groups

group	Mean (SD)
Control	$14.50(.707)$
Case	$13.32(1.42)$
Total	$13.28(1.65)$

Table 7. Mean and SD of participant's age at the time diagnosis breast cancer

	Mean (SD)
\mathbf{N}	393
Case	$45.53(12.54)$

Table 8. Mean and SD of woman's age at menopause across case and control groups

Group	Mean (SD)
Contro1	$47.78(4.96)$
Case	$45.86(6.13)$
Tota1	$46.92(5.59)$

Table 9. Mean and SD of woman's age age at first live birth across case and control groups

Group	Mean (SD)
Contro1	$21.66(4.85)$
Case	$21.91(5.32)$

Tota1

Table 10. Number and percent BMI across cases and control groups

BMI	Case N \& \%		Control N \& \%	
<18.4	10	2.4	10	1.2
18.5-24.9	92	22.1	209	25.4
25-29.9	178	42.7	321	39.0
>30	102	24.5	231	28.1
Total	382	91.6	771	93.7
BMI >19.1= Low Weight, 19.1-26 = Natural Weight, < 26= Hipper Weight				

XXVIII

Table 11. Number and percent hormone using across cases and control groups

Group			Frequency	Percent
Control		have/had	455	55.3
		not have/had	325	39.5
		Total	780	94.8
	Missing	System	43	5.2
	Total		823	100.0
Case		have/had	257	61.6
		not have/had	138	33.1
		Total	395	94.7
	Missing	System	22	5.3
	Total		417	100.0

Table 12. Number and percent duration of hormone using in year across cases and control groups

Group			Frequency	Percent
Control		lower one year	201	24.4
		1-2 years	89	10.8
		more than 2 years	211	25.6
		Total	501	60.9
	Missing	System	322	39.1
	Total		823	100.0
Case		lower one year	97	23.3
		1-2 years	55	13.2
		more than 2 years	125	30.0
		Total	277	66.4
	Missing	System	140	33.6
	Total		417	100.0

Table 13. Number and percent type of hormone used across cases and control groups

Group		Frequency	Percent
Contro1	0	74	9.0
	estrogen	29	3.5
	Composite (estrogen+	328	39.9
	progestin)		

		progestin	1	. 1
		Estrogen + composite	4	. 5
		Projection +composite	48	5.8
		Total	484	58.8
	Missing	System	339	41.2
	Total		823	100.0
Case		$\begin{gathered} 0 \\ \text { estrogen } \end{gathered}$	33	7.9
			19	4.6
		Composite (estrogen+ progestin)	186	44.6
		Estrogen +composite	3	. 7
		Projection +composite	35	8.4
		all types	1	2
		Total	277	66.4
	Missing	System	140	33.6
	Total		417	100.0

Table 14.Number and percent alcohol using across cases and control groups

Group			Frequency	Percent
Control		yes	4	. 5
		no	606	73.6
		Total	610	74.1
	Missing	System	213	25.9
	Total		823	100.0
Case		yes	2	. 5
		no	306	73.4

	Total	308	73.9
	System	109	26.1
Tota1		417	100.0

Table 15.Number and percent smoking across cases and control groups

	group(case			Frequency	Percent
	Control		yes	16	1.9
			no	596	72.4
			Total	612	74.4
		Missing	System	211	25.6
				823	100.0
	Case	Valid	yes	11	2.6
			no	296	71.0
$\stackrel{\sim}{\sim}$			Total	307	73.6
$\underset{\sim}{\circ}$		Missing	System	110	26.4
N				417	100.0

XXXII

Table 16. Number and percent family history breast cancer in first degree family across cases and control groups				
Group			Frequency	Percent
Control		yes	1	50.0
		no	1	50.0
		Total	2	100.0
		yes	277	33.7
		no	541	65.7
		Total	818	99.4
	Missing	System	5	. 6
	Total		823	100.0
Case		yes	152	36.5
		no	264	63.3
		Total	416	99.8
	Missing	System	1	. 2
	Total		417	100.0

Table 17. Number and percent married status across cases and control groups

Table 18. Number and percent biopsy history with breast across cases and control
groups

Group			Frequency	Percent
		yes	1	50.0
		no	1	50.0
		Total	2	100.0
Control		yes	20	2.4
		no	787	95.6
		Total	807	98.1
	Missing	System	16	1.9
	Total		823	100.0
Case	Val id	yes	348	83.5
		no	66	15.8
		Total	414	99.3
	Missing	System	3	. 7
	Total		417	100.0

Pairwise comparison results across the groups (case \& control), are shown in Tables 19 to 29. Estimated 0 Rs and 95% CIs are presented for each 2 -1evel comparison.

Table 19. Odds ratio rural than urban area to having breast cancer

Logistic regressionLog 1ike1ihood $=-654.9958$				Number of obs LR chi2(1) Prob > chi2 Pseudo R2		1031 5.71 0.0169 0.0043
group	Odds Ratio	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
$\begin{array}{r} \text { 2. Location } \\ \text { _cons } \end{array}$	1.528655 .4712838	$\begin{aligned} & .2689367 \\ & .0342238 \end{aligned}$	$\begin{array}{r} 2.41 \\ -10.36 \end{array}$	$\frac{0.016}{0.000}$	$\frac{1.082822}{.4087612}$	$\begin{array}{r} 2.15805 \\ \hline .5433696 \end{array}$

Those lived in rural areas were less likely to get breast cancer than urban citizens (OR=1.52; CI, 0.1.08-2.15) .

Table 20. Odds ratio women more than 40 years than those less than 40 years to having breast cancer

Those women $40-49$ and ≥ 70 years than those less than 40 years were less likely to get breast cancer than urban citizens $(O R=1.32 ; C I, 0.1 .01-1.85$ and $O R=1.78 ; C I, 0.1 .00-3.18$ respectively).

Table 21. Odds ratio menopaused women more than 45 years than those less than 45 years to having breast cancer

tic group ib(2).							
				Number of obs LR chi2(1)			$=\quad 543$
Logistic regression							11.78
				Prob >	chi2	=	0.0006
Log 1ikelihood	$=-367.6980$			Pseudo	R2	=	0.0158
group	Odds Ratio	Std. Err.	z	$P>\|z\|$	[95\%	Conf	Interval]
1 .age_mo	1.869337	. 3422673	3.42	0.001	1.305	678	2.676324
_cons	. 6574074	. 071024	-3.88	0.000	. 5319	536	. 8124477

Menopaused women more than 45 years than those less than 45 years had greater chance to having breast cancer ($O R=1.86$; CI, 0.1.30-2.67)

Table 22. Odds ratio women's BMI more than 18.5 - 24.9 than those were underweight (<18.5) and overweight to having breast cancer

Logistic regr Log $1 \mathrm{ike} 1 \mathrm{i} h o o$	sion $=-729.41683$			Number LR chi Prob > Pseudo	of obs (3) chi2 R2	$=$ $=$ $=$ $=$	$\begin{array}{r} 1153 \\ 5.71 \\ 0.1265 \\ 0.0039 \end{array}$
group	Odds Ratio	Std. Err.	z	$\mathrm{P}>\|z\|$	[95\%		Interval]
N_BMI							
1	[2.271739	1.054964	1.77	0.077	. 9142	658	5.644747
3	1.259718	. 1967239	1.48	0.139	. 9275	676	1. 710808
4	1.003106	. 1731256	0.02	0.986	. 7152	174	1. 406874
_cons	. 4401914	. 0550754	-6.56	0.000	. 3444	624	. 5625243

The comparison results not significant across the groups (case \& control), according to BMI.

Table 23. Odds ratio menopaused women than those less than no menopaused to having breast cancer

Menopaused women more likely to get breast cancer than those no menopaused (OR= 2.47 ; CI, 1.94-3.14)

Table 24. Odds ratio married women than no married to having breast cancer

Logistic regression			Number of obs $=1236$			
			LR chi2(2) $=04.88$			
				Prob	chi2	0.0870
Log 1ikelihood $=-786.35317$				Pseudo R2		0.0031
group	Odds Ratio	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
married						
[2	. 681372	. 1493142	-1.75	0.080	. 4434596	1.046922
[3	. 9204471	. 2542812	-0.30	0.764	. 5356083	1.581796
_cons	. 6964286	. 1452486	-1.73	0.083	. 4627518	1.048106

The comparison results not significant across the groups (case \& control), according to married status.

Table 25. Odds ratio women used hormone than those without using to having

breast cancer

Odds ratio to having breast cancer in women used hormone was .75 more than those without using.

Table 26. Odds ratio women with having problem in breast than those without history to having breast cancer

Odds ratio women with having problem in breast than those without history to having breast cancer to having breast cancer was 1.94 more than those without problem

Table 27. Odds ratio women without having history of natural biopsy
results than those with history to having breast cancer

Odds ratio women without having history of natural biopsy results than those with history to having breast cancer were 207 times greater

Table 28. Odds ratio women with having history of unnatural biopsy results than those without history to having breast cancer

Logistic regression Log 1ikelihood $=-263.06$			Number of obs LR chi2(1) Prob > chi2 Pseudo R2		$\begin{array}{r} 907 \\ 712.24 \\ 0.0000 \\ 0.5751 \end{array}$	
group	Odds Ratio	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
2.biopsy_h istory_unnat~1	$\begin{aligned} & .0041589 \\ & 34.88889 \end{aligned}$	$\begin{aligned} & .0014982 \\ & 11.79512 \end{aligned}$	$\begin{array}{r} -15.22 \\ \hline 10.51 \end{array}$	$\begin{array}{r} 0.000 \\ -0.000 \end{array}$	$\begin{array}{r} .0020528 \\ \hline 17.98522 \end{array}$	$\begin{array}{r} .0084257 \\ 67.67971 \end{array}$

Odds ratio women with having history of unnatural biopsy results than those without history were more likely to get breast cancer.

Table 29. Multivariate logistic


```
The SAS System
02:11 Monday, February 23, 2016 31
BrCa_RAM, sas macro to project for BrCa absolute risk
Listing of All constants required for }\textrm{BrCa}\mathrm{ absolute risk projections
In Relative Risk: Beta
    Gail lnRR CARE lnRR Gail lnRR Gail lnRR AABCS lnRR
Beta White AfmAmren Hispanic NativAmrcn AsianAmrcn
N_Biop 0.529264 0.182212 0.529264 0.529264 0.552636
AggeMen 0.094010}00.267253 0.094010 0.094010 0.074993
AgeFst 0.218626 0 0.218626 0.218626 0.276383
N_Rels 0.958303 0.475724 0.958303 0.958303 0.791856
A.50*NB -0.288042 -0.111941 -0.288042 -0.288042 0
AF*NR -0.190811 0 -0.190811 -0.190811 0
1-Attributable Risk: F(t)
AgeGrp White AfmAmren Hispanic NativAmrcn AsianAmrcn
Age< 50 0.578841 0.729499}0.578841 0.578841 0.475198
Age>=50}00.578841 0.743971 0.578841 0.578841 0.50316
```

Breast cancer composite incidences:				h1*	
5 yr SE	EER 1983:87	SEER 1995:03	193 1994:98	1990:96	1983:87
AgeGrp	White	White A	Afm-Amren	Hispanic	NativAmren
[20:25)	0.0000100	0.0000120	0.0000270	0.0000200	0.0000100
[25:30)	0.0000760	0.0000747	0.0001130	0.0000710	0.0000760
[30:35)	0.0002660	0.0002438	0.0003109	0.0001970	0.0002660
[35:40)	0.0006610	0.0005878	0.0006764	0.0004380	0.0006610
[40:45)	0.0012650	0.0012070	0.0011944	0.0008110	0.0012650
[45:50)	0.0018660	0.0019762	0.0018739	0.0013070	0.0018660
[50:55)	0.0022110	0.0026201	0.0024150	0.0015740	0.0022110
[55:60)	0.0027210	0.0033402	0.00291110	0.0018570	0.0027210
[60:65)	0.0033480	0.0039744	0.0031013	0.0021510	0.0033480
[65:70)	0.0039230	0.0044876	0.0036656	0.0025120	0.0039230
[70:75)	0.0041780	0.0048945	0.0039313	0.0028460	0.0041780
[75:80)	0.0044390	0.0051611	0.0040895	0.0027570	0.0044390
[80:85)	0.0044210	0.0048268	0.0039679	0.0025230	0.0044210
[85:90)	0.0041090	0.0040407	0.0036371	0.0020390	0.0041090
Competing mortality excluding death from BrCa :					h2
5yr SEER 1985:87		SEER	1996-00	1990:96	1985:87
AgeGrp	White	White A	Afrn-Amren	Hispanic	NativAmren
[20:25)	0.0004930	0.0004000	0.0007435	0.0004370	0.0004930
[25:30)	0.0005310	0.0004280	0.0010170	0.0005330	0.0005310
[30:35)	0.0006250	0.0005657	0.0014594	0.0007000	0.0006250
[35:40)	0.0008250	0.0008474	0.0021593	0.0008970	0.0008250
[40:45)	0.0013070	0.0012753	0.0031508	0.0011630	0.0013070
[45:50)	0.0021810	0.0018601	0.0044878	0.0017020	0.0021810
[50:55)	0.0036550	0.0028781	0.0063228	0.0026460	0.0036550
[55:60)	0.0058520	0.0046903	0.0096304	0.0042160	0.0058520
[60:65)	0.0094390	0.0078835	0.0147182	0.0069600	0.0094390
[65:70)	0.0150280	0.0127434	0.0211630	0.0108670	0.0150280
[70:75)	0.0238390	0.0208586	0.0326604	0.0168580	0.0238390
[75:80)	0.0388320	0.0335901	0.0456409	0.0251560	0.0388320
[80:85)	0.0668280	0.0575791	0.0683519	0.0418660	0.0668280
[85:90)	0.1449080	0.1377327	0.1327126	0.0894760	0.1449080
+					

BrCa _RAM, sas macro to project for BrCa absolute risk
Listing of All constants required for BrCa absolute risk projections
Breast cancer composite incidences:
h1*
SEER 18 SEER 18 SEER 18 SEER 18 SEER 18 SEER 18 $\begin{array}{lllllll}5 y r & 1998: 2002 & 1998: 2002 & 1998: 2002 & 1998: 2002 & 1998: 2002 & 1998: 2002\end{array}$ AgeGrp Chinese Japanese Filipino Hawaiian OtrPacIs1 OtrAsian
$\left[\begin{array}{llllllll}20: 25) & 0.0000041 & 0.0000000 & 0.0000075 & 0.0000451 & 0.0000000 & 0.0000124\end{array}\right.$ $\left[\begin{array}{llllllll}25: 30) & 0.0000459 & 0.0000995 & 0.0000811 & 0.0000986 & 0.0000715 & 0.0000595\end{array}\right.$ $\left[\begin{array}{llllllll}30: 35) & 0.0001883 & 0.0002870 & 0.0002275 & 0.0003400 & 0.0002888 & 0.0001843\end{array}\right.$ $\left[\begin{array}{llllllll}35: 40 & 0.0004929 & 0.0005453 & 0.0005498 & 0.0008526 & 0.0006023 & 0.0004547\end{array}\right.$ $\left[\begin{array}{lllllll}{[40: 45)} & 0.0009136 & 0.0011522 & 0.0011294 & 0.0016686 & 0.0007556 & 0.0007913\end{array}\right.$ $\left[\begin{array}{lllllll}45: 50) & 0.0014715 & 0.0018592 & 0.0018139 & 0.0025527 & 0.0007664 & 0.0010485\end{array}\right.$ $\left[\begin{array}{llllllll}50: 55) & 0.0014213 & 0.0026063 & 0.0022237 & 0.0033218 & 0.0018931 & 0.0013725\end{array}\right.$ $\left[\begin{array}{llllllll}55: 60) & 0.0019709 & 0.0032218 & 0.0026803 & 0.0053730 & 0.0023656 & 0.0014955\end{array}\right.$ $\left[\begin{array}{llllllll}60: 65) & 0.0016747 & 0.0040070 & 0.0028912 & 0.0052378 & 0.0028439 & 0.0016467\end{array}\right.$ $\left[\begin{array}{lllllll}65: 70) & 0.0018216 & 0.0035217 & 0.0025344 & 0.0055817 & 0.0029209 & 0.0014784\end{array}\right.$ $\left[\begin{array}{llllllll}770: 75) & 0.0018345 & 0.0035930 & 0.0024572 & 0.0056774 & 0.0023304 & 0.0012160\end{array}\right.$ $\left[\begin{array}{llllllll}75: 80) & 0.0019199 & 0.0035893 & 0.0022866 & 0.0065134 & 0.0020363 & 0.0010677\end{array}\right.$ $\left[\begin{array}{llllllll}80: 85) & 0.0022334 & 0.0035385 & 0.0018148 & 0.0038895 & 0.0014827 & 0.0013761\end{array}\right.$ $\left[\begin{array}{llllllll}85: 90 & 0.0022473 & 0.0020516 & 0.0017509 & 0.0029491 & 0.0010122 & 0.0006616\end{array}\right.$

SEER 18 SEER 18 SEER 18 SEER 18 SEER 18 SEER 18

 5yr 1998：2002 1998：2002 1998：2002 1998：2002 1998：2002 1998：2002AgeGrp Chinese Japanese Filipino Hawaiian OtrPacIs1 OtrAsian
$\left[\begin{array}{lllllll}20: 25) & 0.0002106 & 0.0001736 & 0.0002291 & 0.0005635 & 0.0004655 & 0.0002126\end{array}\right.$ $\left[\begin{array}{llllllll}25: 30) & 0.0001926 & 0.0002958 & 0.0002630 & 0.0003696 & 0.0006005 & 0.0002422\end{array}\right.$ $\left[\begin{array}{llllllll}30: 35) & 0.0002444 & 0.0002283 & 0.0003148 & 0.0010199 & 0.0008511 & 0.0003016\end{array}\right.$ $\left[\begin{array}{llllllll}35: 40) & 0.0003179 & 0.0003632 & 0.0003945 & 0.0012340 & 0.0014783 & 0.0003691\end{array}\right.$
$\left[\begin{array}{llllllll}40: 45) & 0.0004733 & 0.0005906 & 0.0006476 & 0.0020983 & 0.0019315 & 0.0005430\end{array}\right.$ $\left[\begin{array}{llllllll}45: 50) & 0.0008003 & 0.0010861 & 0.0011702 & 0.0029829 & 0.0038666 & 0.0008939\end{array}\right.$ $\left[\begin{array}{llllllll}{[50: 55)} & 0.0012175 & 0.0018600 & 0.0018094 & 0.0054024 & 0.0049249 & 0.0015152\end{array}\right.$
$\left[\begin{array}{llllllll}555: 60 & 0.0020998 & 0.0032166 & 0.0026142 & 0.0095915 & 0.0081771 & 0.0025747\end{array}\right.$
$\left[\begin{array}{llllllll}{[60: 65)} & 0.0034369 & 0.0047194 & 0.0044833 & 0.0163155 & 0.0086382 & 0.0043244\end{array}\right.$
$\left[\begin{array}{llllllll}65: 70) & 0.0060974 & 0.0085353 & 0.0073937 & 0.0201522 & 0.0189747 & 0.0074196\end{array}\right.$
$\left[\begin{array}{llllllll}70: 75) & 0.0106645 & 0.0124335 & 0.0122331 & 0.0273548 & 0.0292576 & 0.0132518\end{array}\right.$
$\left[\begin{array}{llllllll}775: 80) & 0.0201487 & 0.0202302 & 0.0211271 & 0.0504470 & 0.0384090 & 0.0222914\end{array}\right.$
$\left[\begin{array}{llllllll}80: 85) & 0.0379908 & 0.0377255 & 0.0379370 & 0.0722620 & 0.0528696 & 0.0417466\end{array}\right.$
$\left[\begin{array}{llllllll}85: 90) & 0.0983339 & 0.1061491 & 0.0851385 & 0.1458445 & 0.0747457 & 0.0874858\end{array}\right.$
$\stackrel{+}{+}$

Table 30. Relative Risk for women less than 50 years compared to those woman ≥ 50 years

The SAS System 02:11 Monday, February 23, 201633		
BrCa_RAM, sas macro to project for BrCa absolute risk Quick check for erromous records on input file		
(\# of records with errors is the \# listed under the NMiss column in the 'AbsRsk' line)		
The MEANS Procedure		
Variable Label	Mean	Std Dev
RR_Star1 Relative risk age it 50	4.71722	2.87444
RR_Star2 Relative risk age ge 50	3.77483	2.47894

Table 31 . Relative risk for women less than 50 years compared to those woman ≥ 50 years

The SAS System 02:11 Monday, February 23, 20169			
BrCa_RAM, sas macro to project for BrCa absolute risk Quick check for erromous records on input file			
IF MEAN OF Error_Ind' EQUALS 0, ERROR FREE. ERROR LISTING BELOW WILL BE EMPTY. IF MEAN OF 'Error_Ind' IS NOT 0 , ERRORS EXISTS. CHECK ERROR LISTING BELOW.			
The MEANS Procedure			
Variable Label Mean StdDev			
$\begin{array}{lllll}\text { Absolute_Risk } & \text { Abs risk(\%) of BrCa in age interval [} & \text { T1,T2) } & 1.27744 & 0.90747\end{array}$			
The SAS System 0			
The MEANS Procedure			
Variable Label	N Sum Mean		
Absolute_Risk Abs risk(\%) of BrCa in age interval $[\mathrm{T} 1, \mathrm{~T} 2$) AbsRisk_Avg Abs risk(\%) of BrCa in age interval [$\mathrm{T} 1, \mathrm{~T} 2$) for an Average Women	$\begin{array}{llll}346 & 441.9953875 & 1.2774433\end{array}$		
Label	Std Error	Minimum	
Absolute_Risk Abs risk(\%) of BrCa in age interval $[\mathrm{T} 1, \mathrm{~T} 2$) AbsRisk_Avg Abs risk(\%) of BrCa in age interval $[\mathrm{T} 1, \mathrm{~T} 2)$ for an Average Women	$\begin{gathered} 0.0487857 \\ 0.0116270 \end{gathered}$	$\begin{aligned} & 0.0446964 \\ & 0.0297408 \end{aligned}$	
Label	Maximum	Median	
Absolute_Risk Abs risk(\%) of BrCa in age interval $(\mathrm{T} 1, \mathrm{~T} 2)$ AbsRisk_Avg Abs risk(\%) of BrCa in age interval $[\mathrm{T} 1, \mathrm{~T} 2)$ for an Average Women	6.5965000	1.0820557	

```
The SAS System
02:11 Monday, February 23, 2016 31
BrCa_RAM, sas macro to project for }\textrm{BrCa}\mathrm{ absolute risk
Listing of All constants required for }\textrm{BrCa}\mathrm{ absolute risk projections
In Relative Risk: Beta
    Gail lnRR CARE lnRR Gail lnRR Gail lnRR AABCS lnRR
Beta White AfmAmren Hispanic NativAmren AsianAmren
N_Biop 0.529264 0.182212}00.529264 0.529264 0.552636
AgeMen 0.094010
AgeFst 0.218626 0 0.218626 0.218626 0.276383
N_Rels 0.958303}00.475724 0.958303 0.958303 0.791856
A50*NB -0.288042 -0.111941 -0.288042 -0.288042 0
AF*NR -0.190811 0 0
1-Attributable Risk: F(t)
AgeGrp White AfmAmren Hispanic NativAmrcn AsianAmrcn
```



```
Age>}=5000.578841 0.743971 0.578841 0.578841 0.50316
```


[^0]: XXXII

