



#### **Evidence-informed guidelines**





- A way of combining results from a number of individual trials to produce a summary result
- A forest plot displays the summary result of a metaanalysis and the results of the individual studies

















|                                   | Artesunate |          | Quinine             |                    | Risk Ratio |                    | Risk Ratio         |
|-----------------------------------|------------|----------|---------------------|--------------------|------------|--------------------|--------------------|
| Study or Subgroup                 | Events     | Total    | Events              | Total              | Weight     | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl |
| Anh 1989                          | 2          | 19       | 7                   | 22                 | 3.0%       | 0.33 [0.08, 1.41]  |                    |
| Anh 1995                          | 8          | 99       | 18                  | 91                 | 8.7%       | 0.41 [0.19, 0.89]  |                    |
| Cao 1997                          | 4          | 37       | 5                   | 35                 | 2.4%       | 0.76 [0.22, 2.59]  |                    |
| Dondorp 2005                      | 107        | 730      | 164                 | 731                | 76.3%      | 0.65 [0.52, 0.81]  |                    |
| Hien 1992                         | 5          | 31       | 8                   | 30                 | 3.8%       | 0.60 [0.22, 1.64]  |                    |
| Newton 2003                       | 7          | 59       | 12                  | 54                 | 5.8%       | 0.53 [0.23, 1.26]  |                    |
| Total (95% CI)                    |            | 975      |                     | 963                | 100.0%     | 0.62 [0.51, The    | 'whiskers'         |
| Total events                      | 133        |          | 214                 |                    |            | ropro              | east the 05%       |
| Heterogeneity: Chi <sup>2</sup> = | 2.26, df=  | 5 (P = 1 | 0.81); I <b>²</b> = | 0%                 |            | Tepre              | esent the 95%      |
| Test for overall effect:          | Z= 4.82 (  | P < 0.0  | confi               | dence interval 😹 👘 |            |                    |                    |





|                                   | Artesunate |          | Quinine     |       | Risk Ratio |                    | Risk Ratio         |
|-----------------------------------|------------|----------|-------------|-------|------------|--------------------|--------------------|
| Study or Subgroup                 | Events     | Total    | Events      | Total | Weight     | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl |
| Anh 1989                          | 2          | 19       | 7           | 22    | 3.0%       | 0.33 [0.08, 1.41]  |                    |
| Anh 1995                          | 8          | 99       | 18          | 91    | 8.7%       | 0.41 [0.19, 0.89]  | <b>-</b>           |
| Cao 1997                          | 4          | 37       | 5           | 35    | 2.4%       | 0.76 [0.22, 2.59]  |                    |
| Dondorp 2005                      | 107        | 730      | 164         | 731   | 76.3%      | 0.65 [0.52, 0.81]  |                    |
| Hien 1992                         | 5          | 31       | 8           | 30    | 3.8%       | 0.60 [0.22, 1.64]  |                    |
| Newton 2003                       | 7          | 59       | 12          | 54    | 5.8%       | 0.53 [0.23, 1.26]  |                    |
| Total (95% CI)                    |            | 975      |             | 963   | 100.0%     | 0.62 [0.51, 0.75]  | •                  |
| Total events                      | 133        |          | 214         |       |            |                    |                    |
| Heterogeneity: Chi <sup>2</sup> = | 2.26, df = | 5 (P = 1 | 0.81); I² = | 0%    | The 'dia   | mond' represents   |                    |

Test for overall effect: Z = 4.82 (P < 0.00001)

The 'diamond' represents the point estimate and confidence intervals when you combine studies 🍄







The RR in meta-analysis is 0.62. How do you interpret this?







- Do you believe this?
- What additional information would you want to know before you believe it?





### Use whiteboard







The usefulness of an estimate of the size of an effect depends on our certainty around that estimate.



Gordon H Guyatt et al. BMJ 2008;336:924-926



# The origin of GRADE: Which hierarchy?

| Before GRADE | "Levels of evidence"           | "Recommendation<br>grades"   |
|--------------|--------------------------------|------------------------------|
| Oxford CEBM  | 1a, 1b, 2a, 2b, 3a, 3b, 4, 5   | A, B, C, D                   |
| US PSTF      | I, II-1, II-2, II-3, III       | A, B, C, D, I                |
| ACC/AHA      | I, II-a, II-b, III, III (harm) | Ă, B-R, B-NR, C-LD, C-<br>EO |





### **Oxford Centre for Evidence-Based Medicine**

| Level      | Therapy / Prevention, Aetiology / Harm                                                                           |
|------------|------------------------------------------------------------------------------------------------------------------|
| <b>1</b> a | SR (with homogeneity) of RCTs                                                                                    |
| 1b         | Individual RCT (with narrow Confidence Interval")                                                                |
| 2a         | SR (with homogeneity) of cohort studies                                                                          |
| 2b         | Individual cohort study (including low quality RCT; e.g., <80% follow-up)                                        |
| 2c         | "Outcomes" Research; Ecological studies                                                                          |
| <b>3</b> a | SR (with homogeneity) of case-control studies                                                                    |
| 3b         | Individual Case-Control Study                                                                                    |
| 4          | Case-series (and poor quality cohort and case-control studies)                                                   |
| 5          | Expert opinion without explicit critical appraisal, or based on physiology, bench research or "first principles" |





#### **Grades of Recommendation**

| Α | consistent level 1 studies                                                        |
|---|-----------------------------------------------------------------------------------|
| В | consistent level 2 or 3 studies or extrapolations from level 1 studies            |
| С | level 4 studies or extrapolations from level 2 or 3 studies                       |
| D | level 5 evidence or troublingly inconsistent or inconclusive studies of any level |





# The origin of GRADE: Which hierarchy?

| Before GRADE | "Levels of evidence"           | "Recommendation<br>grades"   |
|--------------|--------------------------------|------------------------------|
| Oxford CEBM  | 1a, 1b, 2a, 2b, 3a, 3b, 4, 5   | A, B, C, D                   |
| US PSTF      | I, II-1, II-2, II-3, III       | A, B, C, D, I                |
| ACC/AHA      | I, II-a, II-b, III, III (harm) | Ă, B-R, B-NR, C-LD, C-<br>EO |







Grading of Recommendations Assessment, Development and Evaluation

An approach to formulating:

- Evidence-based recommendations
- Through a transparent and systematic process
- With an explicit link between evidence and recommendations

www.gradeworkinggroup.org









Level

#### What it means

⊕⊕⊕⊕ HIGH We have a lot of confidence that the true effect is similar to the estimated effect

 $\oplus \oplus \ominus \ominus$ We believe that the true effect is probably close to the<br/>estimated effect

 $\begin{array}{ll} \bigoplus \bigoplus \bigoplus \bigoplus \\ \text{LOW} \end{array} & \begin{array}{l} \text{The true effect might be markedly different from the estimated} \\ \text{effect} \end{array} \\ \end{array}$ 

⊕⊖⊖⊖ VERY LOW The true effect is probably markedly different from the estimated effect







Level

 $\oplus \oplus \oplus \oplus$ 

HIGH

What it means *Compared to quinine...* 

Artesunate reduces mortality

⊕⊕⊖ Artesunate probably reduces mortalityMODERATE

⊕⊕⊖⊖ Artesunate may reduce mortality LOW

We don't know if artesunate reduces mortality



 $\Theta \Theta \Theta \Theta$ 

**VERY LOW** 





How to GRADE

#### Level

⊕⊕⊕⊕ HIGH

Evidence from RCTs is considered **high certainty**, but may be downgraded

⊕⊕⊕⊖ MODERATE

⊕⊕⊖⊖ LOW



Evidence from observational studies is considered **low certainty**, but may be up- or downgraded





What would you take into account when considering how much confidence you have in the results of a RCT?







### When to downgrade evidence

#### Level

⊕⊕⊕⊕ HIGH Evidence from RCTs is considered **high certainty**, but may be downgraded

⊕⊕⊕⊖ MODERATE

⊕⊕⊖⊖ LOW

⊕⊖⊖⊖ VERY LOW

# Cochrane

# READ-IT

### **5 reasons to downgrade:**

- Risk of bias
- Inconsistency
- Indirectness
- Imprecision
- Other (publication bias)

### **5 reasons to downgrade:**

| Risk of bias  | Is the risk of bias in individual studies sufficiently large to reduce your confidence in the estimated effect?               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|
| Inconsistency | Do the studies have inconsistent effects? Are the studies and their outcomes too heterogenous to compare?                     |
| Indirectness  | Do the trials reporting this outcome directly address the question we are asking?                                             |
| Imprecision   | Would your clinical action change if either the upper or lower boundary of the 95% confidence interval represented the truth? |
| Other         | Should you suspect publication bias? For example, are the studies all small, and commercially funded?                         |



### When to upgrade evidence

#### Level

⊕⊕⊕⊕ HIGH

 $\oplus \oplus \oplus \Theta$ 

**MODERATE** 

#### Reasons to upgrade:

- Strong association
- Confounders act to reduce
  - observed effect
- Dose-response effect

⊕⊕⊖⊖ LOW Evidence from observational studies is considered **low certainty**, but may be up- or downgraded



Infectious Diseases



### Exercise

Use the five posters around the room to judge how well the evidence answers this question:

### In people with severe malaria does treatment with Artesunate (i.v.) reduce death compared to treatment with Quinine (i.v.)?

Is the evidence:

High Certainty: Artesunate reduces death compared to quinine
Moderate Certainty: Artesunate probably reduces death compared to quinine
Low Certainty: Artesunate may reduce death compared to quinine but...
Very Low Certainty: We don't know whether artesunate reduces death





# Feedback (1): Risk of bias



Is the risk of bias in individual studies sufficiently large to reduce your confidence in the estimated effect?

Sensitivity analyses, removing the trials at high risk of bias, can help inform the judgement

### **Risk of bias: sensitivity analysis**



# Feedback (2): Inconsistency

# The **eyeball test:** Are estimates similar, and do CIs overlap?



# The **statistical tests:** Is there significant unexplained heterogeneity?

Do the studies have inconsistent effects? Are the studies and their outcomes too heterogenous to compare?

### Heterogeneity

Heterogeneity is observed differences in the results of different trials:

- A fixed effects model assumes that there is one true effect that the trials are attempting to measure – When heterogeneity is high this assumption no longer holds.
- When there is heterogeneity but it is still meaningful to combine trials a random effects model can be used
- If there is too much heterogeneity it may be inappropriate or meaningless to pool the trials

There are many causes of heterogeneity, including different populations, interventions, and outcomes.





### **Inconsistency: Example**

Artemether-lumefantrine versus sulfadoxine-pyrimethamine/amodiaquine for uncomplicated malaria Outcome: Treatment failure at day 28

# The **eyeball test:** Are estimates similar, and do CIs overlap?

Favours AL6 Favours AQ+SP



The **statistical tests:** Is there significant unexplained heterogeneity?





### **Inconsistency: Example**

Artemether-lumefantrine versus sulfadoxine-pyrimethamine/amodiaquine for uncomplicated malaria Outcome: Treatment failure at day 28

The eyeball test: Are estimates similar,



unexplained heterogeneity?

Cochrane Infectious Diseases



# Feedback (3): Indirectness

### Study or Subgroup

Anh 1989 Anh 1995 Cao 1997 Dondorp 2005 Hien 1992 Newton 2003 Do the trials reporting this outcome directly address the question we are asking?

- Population:
  - Right patients? Right country? Right illness severity / diagnosis?
- Intervention:
  - Right drug? Right dose?
- Comparator:
  - Did the control group receive current standard care?
- Outcome:
  - Direct measurement? Correct f/u?

### Indirectness

#### Artesunate versus quinine in severe malaria; Outcome: Death

|                                   | Artesunate |          | Quinine             |       |        | Risk Ratio         | Risk               | Ratio        |      |
|-----------------------------------|------------|----------|---------------------|-------|--------|--------------------|--------------------|--------------|------|
| Study or Subgroup                 | Events     | Total    | Events              | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixe          | d, 95% Cl    |      |
| Anh 1989                          | 2          | 19       | 7                   | 22    | 3.0%   | 0.33 [0.08, 1.41]  |                    | _            |      |
| Anh 1995                          | 8          | 99       | 18                  | 91    | 8.7%   | 0.41 [0.19, 0.89]  |                    |              |      |
| Cao 1997                          | 4          | 37       | 5                   | 35    | 2.4%   | 0.76 [0.22, 2.59]  |                    |              |      |
| Dondorp 2005                      | 107        | 730      | 164                 | 731   | 76.3%  | 0.65 [0.52, 0.81]  |                    |              |      |
| Hien 1992                         | 5          | 31       | 8                   | 30    | 3.8%   | 0.60 [0.22, 1.64]  |                    | _            |      |
| Newton 2003                       | 7          | 59       | 12                  | 54    | 5.8%   | 0.53 [0.23, 1.26]  |                    | -            |      |
| Total (95% CI)                    |            | 975      |                     | 963   | 100.0% | 0.62 [0.51, 0.75]  | <b>♦</b>           |              |      |
| Total events                      | 133        |          | 214                 |       |        |                    |                    |              |      |
| Heterogeneity: Chi <sup>2</sup> = | 2.26, df=  | 5 (P = 1 | 0.81); I <b>²</b> = | 0%    |        |                    |                    | 10           | 100  |
| Test for overall effect:          | Z = 4.82 ( | P < 0.0  | 0001)               |       |        |                    | Favours artesunate | Favours quin | nine |

Population: Only 2 out of 6 trials included children.
All trials were conducted in Asia
Intervention: 5 out of 6 trials used IV artesunate, one used IM
Control: Only 4 trials gave the loading dose of Quinine





### Indirectness

#### Artesunate versus quinine in severe malaria Outcome: Death (sub-grouped by loading dose of quinine)

|                                   | Artesur    | nate    | Quini                   | ne    |                | Risk Ratio         | Risk Ratio                           |                             |
|-----------------------------------|------------|---------|-------------------------|-------|----------------|--------------------|--------------------------------------|-----------------------------|
| Study or Subgroup                 | Events     | Total   | Events                  | Total | Weight         | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                   |                             |
| 1.5.1 No loading dose             | 9          |         |                         |       |                |                    |                                      |                             |
| Anh 1995                          | 8          | 99      | 18                      | 91    | 8.7%           | 0.41 [0.19, 0.89]  | <b>_</b> _                           |                             |
| Hien 1992                         | 5          | 31      | 8                       | 30    | 3.8%           | 0.60 [0.22, 1.64]  |                                      |                             |
| Subtotal (95% CI)                 |            | 130     |                         | 121   | 12.5%          | 0.47 [0.25, 0.87]  | •                                    | Did the inclusion of trials |
| Total events                      | 13         |         | 26                      |       |                |                    |                                      |                             |
| Heterogeneity: Chi <sup>2</sup> = | 0.37, df=  | 1 (P =  | 0.54); I² =             | :0%   |                |                    |                                      | without a quinine loading   |
| Test for overall effect:          | Z= 2.42 (  | P = 0.0 | 2)                      |       |                |                    |                                      | intribut a quimite roading  |
|                                   |            |         |                         |       |                |                    |                                      | dose effect the results?    |
| 1.5.2 Loading dose                |            |         |                         |       |                |                    |                                      |                             |
| Anh 1989                          | 2          | 19      | 7                       | 22    | 3.0%           | 0.33 [0.08, 1.41]  |                                      |                             |
| Cao 1997                          | 4          | 37      | 5                       | 35    | 2.4%           | 0.76 [0.22, 2.59]  |                                      |                             |
| Dondorp 2005                      | 107        | 730     | 164                     | 731   | 76.3%          | 0.65 [0.52, 0.81]  |                                      | Should you downarada        |
| Newton 2003                       | 7          | 59      | 12                      | 54    | 5.8%           | 0.53 [0.23, 1.26]  |                                      | Should you downgrade        |
| Subtotal (95% CI)                 |            | 845     |                         | 842   | 87.5%          | 0.64 [0.52, 0.78]  | •                                    | for indiractnose?           |
| Total events                      | 120        |         | 188                     |       |                |                    |                                      | IOI IIIUIIECIIIE55 (        |
| Heterogeneity: Chi <sup>2</sup> = | 1.08, df=  | 3 (P =  | 0.78); <b>i²</b> =      | 0%    |                |                    |                                      |                             |
| Test for overall effect:          | Z= 4.24 (  | P ≤ 0.0 | 001)                    |       |                |                    |                                      |                             |
|                                   |            |         |                         |       |                |                    |                                      |                             |
| Total (95% CI)                    |            | 975     |                         | 963   | <b>100.0</b> % | 0.62 [0.51, 0.75]  | ◆                                    |                             |
| Total events                      | 133        |         | 214                     |       |                |                    |                                      |                             |
| Heterogeneity: Chi <sup>2</sup> = | 2.26, df = | 5 (P =  | 0.81); I <sup>z</sup> = | 0%    |                |                    |                                      |                             |
| Test for overall effect:          | Z = 4.82 ( | P < 0.0 | 0001)                   |       |                |                    | Favours artesunate Favours quinine   |                             |
|                                   |            |         |                         |       |                |                    | r avoaro ancoanaro i r avoaro quinne |                             |

# Feedback (4): Imprecision

|                          | Artesunate   |          | Quinine      |     | Risk Ratio |                    | Risk Ratio                         |
|--------------------------|--------------|----------|--------------|-----|------------|--------------------|------------------------------------|
| Study or Subgroup        | Events Total |          | Events Total |     | Weight     | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                 |
| Anh 1989                 | 2            | 19       | 7            | 22  | 3.0%       | 0.33 [0.08, 1.41]  |                                    |
| Anh 1995                 | 8            | 99       | 18           | 91  | 8.7%       | 0.41 [0.19, 0.89]  |                                    |
| Cao 1997                 | 4            | 37       | 5            | 35  | 2.4%       | 0.76 [0.22, 2.59]  |                                    |
| Dondorp 2005             | 107          | 730      | 164          | 731 | 76.3%      | 0.65 [0.52, 0.81]  |                                    |
| Hien 1992                | 5            | 31       | 8            | 30  | 3.8%       | 0.60 [0.22, 1.64]  |                                    |
| Newton 2003              | 7            | 59       | 12           | 54  | 5.8%       | 0.53 [0.23, 1.26]  |                                    |
| Total (95% CI)           |              | 975      |              | 963 | 100.0%     | 0.62 [0.51, 0.75]  | ) •                                |
| Total events             | 133          |          | 214          |     |            |                    |                                    |
| Heterogeneity: Chi² =    | 2.26, df =   | 5 (P = 1 | 0.81); I² =  | 0%  |            |                    |                                    |
| Test for overall effect: | Z = 4.82 (   | P < 0.0  | 0001)        |     |            |                    | Favours artesunate Favours quinine |

Would your clinical action change if either the upper or lower boundary of the 95% confidence interval represented the truth?

Does the CI include:

- Clinically important benefit?
- No clinically important difference?
- Clinically important harm?

### Imprecision

#### Artesunate versus quinine in severe malaria Outcome: Neurological disability at discharge

|                                                   | Artesu                   | nate               | Quinine           |       |        | Risk Ratio         | Risk Ratio                                             |         |  |
|---------------------------------------------------|--------------------------|--------------------|-------------------|-------|--------|--------------------|--------------------------------------------------------|---------|--|
| Study or Subgroup                                 | Events                   | Total              | Events            | Total | Weight | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl                                     |         |  |
| Cao 1997                                          | 1                        | 33                 | 0                 | 30    | 14.3%  | 2.74 [0.12, 64.69] |                                                        |         |  |
| Dondorp 2005                                      | 7                        | 623                | 3                 | 567   | 85.7%  | 2.12 [0.55, 8.17]  |                                                        |         |  |
| Total (95% Cl)                                    |                          | 656                |                   | 597   | 100.0% | 2.21 [0.64, 7.63]  |                                                        |         |  |
| Total events                                      | 8                        |                    | 3                 |       |        |                    |                                                        |         |  |
| Heterogeneity: Chi² =<br>Test for overall effect: | 0.02, df =<br>Z = 1.26 ( | 1 (P =<br>(P = 0.2 | 0.89); I² =<br>1) | 0%    |        |                    | 0.01 0.1 1 10 10<br>Favours artesunate Favours quinine | -H<br>O |  |

What about for this outcome?











# Feedback (5): Other bias



Should you suspect publication bias?

For example, are the studies all small, and commercially funded?

### **Other bias: publication bias**



### **Other bias: publication bias**



### **Other bias: publication bias**



Cochrane Infectious Diseases



Is publication bias likely with this forest plot?

Would you be certain in the results of the metaanalysis?





#### **Probiotics for treating acute infectious diarrhoea**

Shelui Collinson, Andrew Deans, April Padua-Zamora, Germana V Gregorio, Chao Li, Leonila F Dans, Stephen J Allen Authors' declarations of interest

Version published: 08 December 2020 Version history

https://doi.org/10.1002/14651858.CD003048.pub4 🕑



### Gunpowder, funnels, and plot.









## Feedback

# Would you downgrade the certainty for the mortality outcome in this review?

### GRADE

Artesunate versus quinine in severe malaria Outcome: Death

Study limitations: Limiting trials to only those with adequate allocation concealment did not change result Inconsistency: No statistical heterogeneity Indirectness: Very little data from children, no African trials Precision: Precise result of reduced deaths in adults in Asia Publication bias: Possibly some evidence of publication bias, but result from largest trial still indicates benefit

NNT = 12 (95%CI: 9 to 18)

In adults: High Certainty evidence In children: Low Certainty evidence





## Would you recommend Artesunate in adults? Would you recommend Artesunate in children?

What other factors might you want to consider?





### Artesunate was 10 x more expensive? (resource use/cost)

# Artesunate required specialised monitoring? (feasibility)

### Artesunate caused more neurological sequelae?

(balance between benefits and harms)







YFY 2008-11-11

### Moving from evidence to recommendations

#### **Requires further consideration of:**

- The balance of benefits and harms
- Feasibility
- Resource implications/costs

### It is therefore possible to make:

- STRONG recommendations based on LOW certainty evidence
- Recommendations NOT to do something even with HIGH certainty evidence that it works





### **Questions to ask...**

- Is the problem a priority?
- How substantial are the desirable anticipated effects?
- How substantial are the undesirable anticipated effects?
- What is the overall certainty of the evidence of effects?
- Does the balance between desirable and undesirable effects favour the intervention or the comparison?



