Methods to confirm SARS-CoV-2 infections in vaccine effectiveness studies

Dr Anthony Nardone, Epiconcept, France

WHO EMRO COVID-19 Vaccine Effectiveness Study;
Status Update and Important Considerations
17 and 24 November 2022

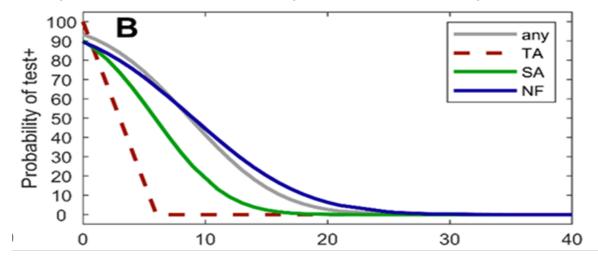
Overview

Specimens to be collected for PCR testing

 Implications of using Rapid Diagnostic Tests in vaccine effectiveness (VE) studies

Introduction

- Nasopharyngeal (NP) swabs and PCR testing to confirm SARS-CoV-2 infection gold standard in VE studies
 - NP regarded as intrusive
 - PCR capacity lacking in some situations
- Alternatives to identify current SARS-CoV-2 infections
 - Saliva rather than NP swab for PCR testing
 - Rapid Diagnostic Tests (RDT)
- Serology (not part of this presentation)
 - Use in different studies to confirm previous infections

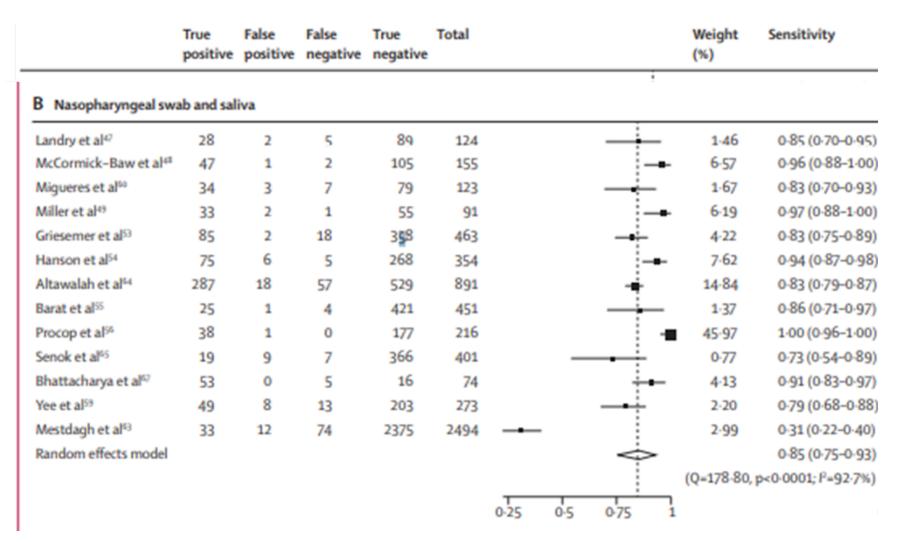

PCR testing of different specimens for SARS-CoV-2

- Gold standard is Nasopharyngeal (NP) swab
 - Higher density of virus
 - Ideally conducted by trained HCW
 - Viewed as uncomfortable and intrusive
- Alternative specimens
 - Oropharyngeal
 - Nasal
 - Saliva collected by swab, drooling or spitting
- Advantages in use of saliva
 - Non-invasive and painless
 - Particularly suitable for children or frail individuals
 - Does not require trained personnel or use of protective equipment
 - Easy to handle (only need sterile container) so can self-sample
 - Used in VE cohort studies as regular follow-up

Timing of specimen for SARS-CoV-2 testing

Persistence detection SARS-CoV2 in in a cohort of patients with different specimens and test platforms

- Timing of when specimen taken will impact on test performance
- Weekly NP swabbing of teenagers and those with initial positive SARS-CoV-2 followed up with:
 - Nasopharyngeal swabs + PCR
 - Rapid Diagnostic Test (RDT)
 - Saliva sample + PCR
- SARS-CoV-2 detected by test/specimen:
 - Up to day 5 for RDT
 - Up to day 15 for saliva+PCR
 - >Day20 for PCR for NP+PCR


Performance of PCR on different specimens

- Systematic review of sensitivity/specificity of PCR testing different swabbing/sampling methods¹
 - Requirement studies report results of paired samples
 - NP sample taken by HCW as reference (gold standard) assay
 - Pooled estimates obtained for PCT test performance
- Specificity for all specimen types >97%
- Sensitivity by order
 - Pooled nasal and oral (99%)
 - Nasal (86%)
 - Saliva (85%)
 - Oral (68%)

^{1.} Tsang et al Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. Lancet Inf Dis 2021 doi: 10.1016/S1473-3099(21)00146-8

Sensitivity of PCR testing using saliva specimen

- Some outliers in reported studies
- Importance of good procedure in obtaining saliva sample
 - Not to rinse mouth out
 - Avoid eating drinking prior to giving sample
 - Provide adequate sample

^{1.} Tsang et al Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. Lancet Inf Dis 2021 doi: 10.1016/S1473-3099(21)00146-8

Rapid diagnostic tests (RDT)

Rapid Diagnostic Tests (RDT) detect SARS-CoV-2 proteins through 'lateral flow tests' and advantages are:

- Portable
 - point-of-care or in non-healthcare settings (e.g. home);
- No specialist operator or laboratory
- Easy to perform
 - minimum extra equipment or complicated preparation
- Less expensive than standard laboratory tests
- Provide results 'while you wait'

Sensitivity and specificity RDT

Sensitivity and specificity of RDT will vary by brand

Review showed high specificities in brands but sensitivities varied (34%-91%)¹

Performance of test will depend on local epidemiology and population tested

Positive predictive value (PPV) increases with higher prevalence

WHO standards for Ag-RDTs

• ≥ 80% sensitivity and ≥ 97% specificity among symptomatic individuals

List of recommended RDT available at

https://www.finddx.org/covid-19/tests/

Use RDT for COVID-19 self-testing

Prioritized for settings where there is limited access to NAAT

WHO standards for Ag-RDTs

• ≥ 80% sensitivity and ≥ 97% specificity among symptomatic individuals

WHO recommend when using RDT self-testing for diagnostic purposes:

- ongoing community transmission
- testing in individuals with symptoms ≤ 7 days
- testing in individuals with recent exposures (such as close contacts and health and care workers) who are asymptomatic
- testing to detect and respond to suspected outbreaks

WHO guidance on VE studies

Recommendation to use RT-PCR to confirm COVID-19 status VE studies

Minimum sensitivity ≥85% and specificity ≥98% for VE studies

Outcome misclassification

- Lower specificity more impact on VE estimates than sensitivity
- Bias Test-Negative Design (TND) studies > cohort

False negatives:

- More noted in severe disease due to later presentation
- Sensitivity PCR > RDT
- RDT lower sensitivity in vaccinated = over-estimated VE

False positives:

- Chronic shedder and more problematic with high incidence
- Use of clinical case definition

Examples RDT in COVID-19 VE studies

Test-Negative Designs (TND):

- COVID-19 VE estimates reported Delta period (July-August 2021)¹
 - TND in primary care services in 10 European countries
 - 5 sites used RDT within surveillance system
 - Samples included if taken ≤5 days of symptom onset
- RDT reported for ~1/3 cases and ~2/3 controls
- Sensitivity analysis excluding participants with RDT results
 - Lower VE estimates
 - Most differences minimal (except in 30-44 age group)

Cohort studies:

- RDT and PCR often used in combination
 - Biweekly: 1*PCR and 2*self-tested RDT in HCW²
 - Testing of symptomatic cases with RDT or PCR
- Use of RDT performed in healthcare settings³

- Kissling et al Eurosurveillance 2022
 https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.21.2101104
- 2. Hall V et al N Engl J Med 2022 doi: 10.1056/NEJMoa2118691
- https://clinicaltrials.gov/ct2/show/NCT04868448

Conclusion

PCR testing of NP swab remains gold standard for VE studies

- Use of alternative methods or specimens dependent on situation
 - RDT could be employed in low-capacity settings
 - Saliva samples collected with regular follow-up
- Advantages of alternative methods need to be balanced against reduction in sensitivity and possible over-estimation of VE

Acknowledgments

• Esther Kissling, Madelyn Rojas, Sandra Cohuet, Celine Gurry

Thank you

