COVID 19 Vaccine effectiveness studies Updated guidance on study design and bias

Dr Sandra Cohuet, Epiconcept, France

WHO EMRO COVID-19 Vaccine Effectiveness Study; Status Update and Important Considerations 17 and 24 November 2022

Global guidance from WHO

- March and July 2021: Global guidance and 1st addendum on conducting COVID-19 VE studies
- October 2022: 2nd addendum
 - Lessons learnt from >2000 studies that have highlighted several methodological concerns
 - Waning VE is prominent
 - Omicron causing immune evasion
 - High vaccination rate in some settings
 - Complex vaccination landscape:
 - multiple vaccines used at different periods
 - targeting specific groups of individuals
 - heterologous schemes for primary series and booster vaccines
 - Hybrid immunity common in many settings makes interpretation of VE evaluations more challenging

Overview

- Covid-19 Vaccine Effectiveness studies (VE): Updates from HQ (Daniel Feikin presentation)
 - Hybrid immunity
 - Variant specific VE estimates
 - Absolute and Relative VE of 2nd booster dose

• This presentation

- Study design
 - Case selection
 - Outcome comparison group selection (controls)
 - Vaccine comparison group
 - Relative VE
 - The first week after vaccine dose
 - Using other time periods after vaccination
- Bias
 - Negative VE
 - Changes in testing practices
 - Test negative controls positive for influenza
 - Duration of protection

Study design

WHO EMRO Workshop on "COVID-19 VE Study" 17 and 24 November 2022

Study design/ Case selection – outcome definition

- Severe disease definition in the context of Omicron in VE evaluations
 - Hospitalization with SARS-CoV-2 infection (+/- symptoms) = commonly used proxy for severe disease
 But
 - Criteria for hospitalization varied across place and time
 - Omicron = attenuated intrinsic severity + high prevalence of infection
 - Frequent hospital admissions among people with incidental Omicron infection unrelated with reason for admission
 - Frequent hospital admissions among people with infection-induced exacerbation of chronic medical conditions
 - Misclassifications of the severe outcome due to Omicron
 - Underestimation of VE against hospitalized Omicron cases
 - Suggestions
 - Use of more specific case definition for severe respiratory COVID 19 infection
 - Indicators of respiratory distress = O₂ requirement, ICU admission, mechanical ventilation
 - Duration of hospitalization > 2 days or more in the case definition
 - VE against progression from Omicron infection to hospitalization or severe respiratory disease

Change in case definition makes historical comparison difficult – small sample size because severe cases are rare

Study design / Outcome comparison group selection (controls)

- Assuming persons without a positive test result are negative
 - Omicron = high incidence of infection including asymptomatic
 - Control = tested negative at one point in time or never tested negative
 - Misclassification in VE evaluations
 - Suggestions
 - Routine testing in order to avoid misclassification in cohort study (issue mostly for database studies)
 - TND: exclusion of all persons with a recent history of infection (<90 days prior to enrollment) + participants tested at enrollment
- Control selection for VE evaluations of severe diseases among hospitalized cases
 - Controls = test-negative hospitalized cases (TND)
 - High COVID 19 incidence
 - Few persons with COVID 19 symptoms are tested negative persons few controls
 - Lower negative predictive value of lab test pairs false negative and misclassification bias
 - Suggestions
 - Controls = Test negative persons from the general population (TND) when testing is done prior to decision to hospitalize and cases and controls rise from the same source pop

Study design/ Vaccine comparison group

- Vaccinated comparison group for VE of boosters doses
 - Absolute VE (aVE) = <u>risk among vaccinated</u> X 100

risk among unvaccinated

But

- High vaccine coverage in many settings
- Unvaccinated individuals quite different from vaccinated individuals

Organizatio

- SARS COV 2 exposure and/or disease risk
- Suggestions
 - Vaccine comparison group for VE of booster doses (1st or 2nd booster dose)
 - Relative VE = compare different level of vaccine doses (e.g. 1st booster compared to primary series or second booster dose compared to first booster dose)
- When we use vaccinated comparison group, it is important to select:
 - Comparable group in terms of age and risk profile
 - Only persons who are eligible for the vaccination being evaluated (1st or 2nd booster dose)
 - Higher risk of exposure (HCW) or higher risk of severe disease (elderly)
- Comparison to time frames post vaccination
 - Comparison of persons during the same period of time to account for circulating variant
 - Stratification by time period
 - Adjustment by calendar time
 - Interpretation of VE estimates: time since administration of the last dose should be considered (waning)
 - Compare 1st booster dose to primary series in the period 6-9 months after primary series (due to waning)d Healt

Study design/ Vaccine comparison group/ Relative VE

- Relative VE (rVE) provides a way to quantify additional preventive benefit of a booster dose vs a primary series
- rVE= <u>aVE booster aVE primary serie</u> X 100
 - 1 aVE primary series
- Low aVE primary series
 - aVE booster dose = rVE booster dose
 - If aVE primary series = 0% (x axis) and rVE of the booster dose = 50% (light Blue line) then aVE of the booster dose = 50%
- High aVE primary series
 - rVE of the booster dose vary quite dramatically
 - Compare to incremental gain of the aVE who is small
 - If aVE primary series = 90% (x axis) and rVE of the booster dose = 50% (light Blue line) then aVE of the booster dose = 95%

Relative VE/ Relation between Absolute VE to relative VE

Absolute VE of primary series

Study design/ Vaccine comparison group/ Relative VE

- The true aVE of the booster dose should always be higher than the rVE
- The rVE of a dose must be interpreted with this understanding
 - comparison group has potentially some residual protection from the vaccine.
- Interpreting the rVE requires knowing
 - the population and vaccine being evaluated
 - the timing of the last dose
 - the clinical outcome
 - epidemiologic situation, including the circulating SARS-CoV-2 variants
- aVE of the primary series from one study is context and time-specific
 - cannot be used to calculate the aVE of a booster dose in another study
- rVE of a given vaccine cannot be compared across studies
 - rVE is dependent on aVE
 - averted events can vary widely from study to study
- If possible investigators should report
 - rVE and aVE of the dose being evaluated (even suspected bias in aVE)
 - Absolute risk reduction in cases averted per denominator pop
- Communication challenges in communicating relative vaccine effectiveness
 - This study demonstrated a rVE of 50%
 - There was 50% of reduction in the risk of Omicron symptomatic disease
 - among those who received a booster dose of vaccine X, a median of y DAYS ago
 - compared to those who received the primary series of vaccine X, a median of X DAYS ago.

Absolute and relative VE of the first booster dose against Omicron

- rVE is lower or equal to the aVE of the booster dose
 - persons in the comparison group potentially have some vaccineinduced immunity
- aVE of the booster dose
 - cannot be calculated from the rVE alone and need to be provided by the investigators
 - rVE and the aVE of the primary series at the same time in the same population is necessary

^a Labels on y-axis indicate: [reference number], country, population, vaccine. Reference numbers refer to study numbers in Table 2 of the COVID-19 Vaccine Effectiveness Results Summary Table found at <u>https://view-hub.org/resources</u>.

Study design/ Vaccine comparison group/ The 1st week after vaccine dose

- Comparison of risk among those at least two weeks post-vaccination to those in the first week after vaccination.
- Not expected impact of the vaccine in the first week (immune system responding to a vaccine dose)
- Issue: reduced risk observed in the first few days after vaccination
 - During COVID-19 vaccination roll-out, many countries advised persons to defer vaccination if they
 were feeling ill
 - Persons recently infected selectively excluded from vaccination but likely have been diagnosed in the week when they were originally scheduled for vaccination Deferral bias/healthy vaccinee bias
- Persons vaccinated with a first or a second booster more similar to those with primary series or first booster dose/ unvaccinated
 - minimizing confounding due to behavioral differences between vaccinated and unvaccinated persons.
 - first week after the 1st booster dose = comparison group
 - Use day 3-7 or day 4-6 after vaccination as the comparison group, excluding persons in the first three days after vaccination.

Study design/ Vaccine comparison group/Using other time periods after vaccination

- Waning VE against Omicron infection and symptomatic disease for the primary series within a few months after vaccination
- Presence of waning immunity against infection and symptomatic disease can be used
 - to minimize the bias of comparing vaccinated persons to the increasingly different unvaccinated persons
- rVE evaluation against infection comparing vaccinated persons with persons vaccinated further in the past
 - results in the rVE approaching the aVE.
- rVE evaluation against infection comparing persons with their last dose of the primary series >180 day ago to persons who received their booster dose.
 - If the effectiveness of the primary series is near zero by six months post vaccination rVE for the booster dose close to the aVE for the primary series + booster dose
 - Time frame of >180 days need to be adjusted to the context
- rVE evaluation against infection comparing persons with a booster dose to those vaccinated with the primary series 5-9 months and >9 months ago
 - rVE of a booster dose against infection restricted to those vaccinated with the primary series 5-9 months ago was 36.4%
 - 46.5% when restricted to those who received their primary series >9 months prior
 - Due to residual protection from the primary series in the 5–9-month period
- rVE evaluation against severe disease using comparison with other time periods after vaccination is not recommended
 - due to the generally slower waning of protection against severe disease with time since vaccination.

• Thank you for your attention

